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Quantum transducers play a crucial role in hybrid quantum networks. A good quantum trans-
ducer can faithfully convert quantum signals from one mode to another with minimum decoherence.
Most investigations of quantum transduction are based on the protocol of direct mode conversion.
However, the direct protocol requires the matching condition, which in practice is not always fea-
sible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum
signals without requiring the matching condition. The adaptive protocol only consists of Gaussian
operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol
can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne
detection. It can be implemented to realize quantum state transfer between microwave and optical
modes.

Quantum transducers (QT) can convert quantum sig-
nals from one bosonic mode to another, which may have
different frequencies, polarizations, or even mode carri-
ers. QT enables quantum information transfer between
different physical platforms, which is crucial for hybrid
quantum networks [1, 2]. There have been significant ad-
vances toward quantum state transfer between different
bosonic systems, such as conversion between microwave
and mechanical/spin-wave modes [3–6], between optical
and mechanical/spin-wave modes [7–10], and etc. Moti-
vated by the hybrid quantum networks with optical quan-
tum communication and microwave quantum informa-
tion processing, recently there are experimental demon-
strations of conversion between microwave and optical
coherent signals with decent conversion efficiencies [11–
13], but the signal attenuation and added noise still pre-
vent us from achieving quantum transduction between
microwave and optical modes.

Most investigations of quantum transduction are based
on the direct quantum transduction (DQT) protocol [3–
13]. As illustrated in Fig. 1a, DQT protocol has a sim-
ple structure that injects quantum signals to the input
port and retrieves them from the output port of the
mode converter, which can hybridize different modes with
enhanced bilinear couplings betweeen localized modes
(Fig. 1b). The energy mismatch between the input and
output states can be compensated by parametric pro-
cesses and stiff pumps [11, 12, 14–16]. Unlike classical
signals, quantum signals are vulnerable to both attenua-
tion and amplification, which irreversibly add noise and
induce decoherence. Hence, DQT protocol requires the
matching condition (MC) (see [17] for more detailed dis-
cussion on MC) so that every excitation entering the in-
put port can be faithfully converted into an excitation
exiting the output port, without affecting other ports
[9, 20, 26]. In practice, however, MC is not always fea-
sible, due to limited tunability of device parameters [27]
and undesired parametric conversion processes [11]. For
small deviation from MC, we may use quantum error
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FIG. 1. Schematic of the direct and adaptive protocols. (a)
The direct protocol injects quantum signals to the input port
and retrieves them from the output port of the mode con-
verter. (b) A simple mode converter has bilinear coupling

Ĥ =
(
ga†1a2 + g′a†1a

†
2 + h.c

)
between two internal modes a1

and a2 with coupling strengths g and g′, and external coupling
strength κ1 and κ2. (c) The adaptive protocol injects not only
quantum signals to the input port, but also squeezed vacuum
to the ancilla port of the mode converter. The adaptive con-
trol (dashed orange box) performs a displacement operation
to the output port conditioned on the homodyne detection of
the idler port. Up to a unitary recovery operation (cyan box),
quantum signals can be retrieved from the output port.

correction to actively suppress the noise and restore the
encoded quantum information [28–35]. Nevertheless, the
quantum error correction has limited capability of cor-
recting errors (e.g., no more than 50% loss) [36]. There-
fore, it is important to develop a quantum transduction
protocol to bypass MC.

In this Letter, we propose the adaptive quantum trans-
duction (AQT) protocol that does not require MC.
Adaptive quantum protocols have been developed for
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various applications, including quantum teleportation
[37, 38], quantum phase estimation [39], measurement
based quantum computation [40, 41], quantum error cor-
rection [42], and reversible quantum interface [43]. We
incorporate the ingredients of adaptive control to the gen-
eral design of quantum transducers to bypass MC as well
as boost the performance. This scheme turns out to in-
clude quantum teleportaion as a special case.

Adaptive quantum transduction. As illustrated in
Fig. 1c, AQT prepares a squeezed vacuum for the ancilla
port, performs homodyne detection at the idler port, and
applies adaptive control to the output conditioned on the
homodyne outcome. Up to a unitary operation, quan-
tum signals can be converted from the input to output
ports. If MC is satisfied, quantum signals can be per-
fectly converted with no need of adaptive control, and
thus AQT is reduced to DQT (Fig. 1a). If MC is not
fulfilled, the mode converter will distribute the quantum
signal (green arrow) and squeezed vacuum noise (light
blue arrow) over both output and idler ports. The quan-
tum signal leaks into the environment via the idler port,
while the noise is added to the output. However, the
squeezed vacuum from ancilla port injects a strong and
correlated noise to the anti-squeezing quadratures of the
output and idler ports, so that we may use homodyne
detection and adaptive control to cancel the added noise
as well as prevent the signal leakage to the environment.
On the one hand, the homodyne detection measures the
anti-squeezed noises of the idler port without disclosing
the information about the quantum signal, since the idler
port is dominated by the large fluctuation of the anti-
squeezed noise. On the other hand, the adaptive displace-
ment operation conditioned on the homodyne detection
completely removes the correlated anti-squeezing noise
of the output port, leaving the output signal equivalent
to the input signal up to a Gaussian unitary operation.
Since there is no assumption of prior-knowledge of the in-
put signal, the protocol can faithfully convert arbitrary
quantum signal from one mode to another.

Generally, we consider a mode converter that trans-
forms m input modes and n ancilla modes into m output
modes and n idler modes. AQT protocol will (1) inject
squeezed vacuum ρ̂anc to the ancilla modes, (2) perform
homodyne measurement Π̂η for the idler modes with out-
come η ∈ Rn, and (3) apply adaptive displacement DFη

to the output modes with linearly transformed displace-
ment Fη ∈ Cm. For arbitrary input state ρ̂in, the output
state of AQT is

ρ̂out =

∫
dηDFη

[
trmeas(US [ρ̂in ⊗ ρ̂anc] Π̂η)

]
, (1)

where US is the Gaussian unitary operation [18] from the
mode converter, which can be characterized by a sym-
plectic scattering matrix S transforming the input and
ancilla modes (x) to the output and idler modes (y)


yb
yb′

yh
yh′

 =


Sb,a Sb,a′ Sb,z Sb,z′

Sb′,a Sb′,a′ Sb′,z Sb′,z′

Sh,a Sh,a′ Sh,z Sh,z′

Sh′,a Sh′,a′ Sh′,z Sh′,z′




xa
xa′

xz
xz′

 ,(2)

with xa(xa′) for all the Q(P)-quadratures of the input
modes, yb(yb′) for the Q(P)-quadratures of the output
modes, xz(z′) for the squeezed (anti-squeezed) quadra-
tures of the ancillary modes, and yh(h′) for the measured
(unmeasured) quadratures of the idler modes. MC corre-

sponds to a special case that the subblock

(
Sb,a Sb,a′

Sb′,a Sb′,a′

)
of the scattering matrix is equivalent to the identity ma-
trix up to some symplectic transformation [9, 17, 20],
but here we do not require such a condition for AQT.
We may choose the squeezed and measured quadratures
(xz and yh), so that the anti-squeezed noise in xz′ can
be inferred from the homodyne detection of yh associ-
ated with an invertible submatrix Sh,z′ . We choose the
linear transformation

F = F? = −
(
Sb,z′

Sb′,z′

)
(Sh,z′)

−1
, (3)

which can completely remove the anti-squeezed noise
from the output modes. Moreover, for this particular
choice of F?, the effective scattering matrix between the
input and output is

S̃ =

(
Sb,a Sb,a′

Sb′,a Sb′,a′

)
+ F?

(
Sh,a Sh,a′

)
, (4)

which is a symplectic matrix, as shown in Theorem 1 of
[17]. Unlike general scattering matrices, the symplectic
S̃ implies that the output state (after the adaptive dis-
placement) is a simple Gaussian unitary transformation
of the input state

ρ̂out = US̃ [ρ̂in] , (5)

where US̃ is the Gaussian unitary operation associated

with symplectic S̃. We can perfectly restore the original
input state by applying a unitary recovery operation U−1

S̃

over the output modes, ρ̂out → U−1S̃
[ρ̂out] = ρ̂in. Since

AQT protocol works for generic scattering matrix S, it
can bypass MC to achieve perfect conversion of arbitrary
quantum signals.

Finite squeezing and imperfect homodyne. So far, we
have assumed the ideal situation with infinite squeezing
and perfect homodyne detection for AQT protocol. In
practice, however, we only have finite squeezing and im-
perfect homodyne detection. The finite squeezing can
be characterized by ν = e−2ξ(2nz + 1), depending on
the squeezing parameter ξ and thermal noise nz prior
to squeezing. In terms of logorithmic unit of decibel,
x → 10 log10 x (dB), squeezing of ν ≈ −15dB,−10dB
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FIG. 2. Performance of adaptive protocol with imperfect
squeezing and homodyne detection for beam-splitter type cou-
pling. (a) & (b), The average fidelity of AQT as a function
of imperfect squeezing ν, given imperfect homodyne detec-
tion of µ = −20,−10 and 0dB for transmittance T = 0.8 and
T = 0.1, respectively. The dark dotted dashed lines corre-
spond to the threshold fidelity of 1/2. The green dashed lines
correspond to the fidelity achieved by DQT. (c) & (d), The
quantum channel capacity of AQT for transmittance T = 0.8
and T = 0.1, respectively. The green dashed lines correspond
to the channel capacity achieved by DQT. For T = 0.1, the
channel capacity vanishes for DQT, while AQT can achieve a
finite quantum channel capacity with experimentally feasible
µ and ν.

for optical and microwave modes have been achieved
[44, 45], respectively. The imperfect homodyne detec-
tion can be characterized by µ = 1−η

η , depending on

the detector efficiency η ≤ 1 . In terms of decibel [46],
we can achieve homodyne detection with achievable im-
perfection of µ ≈ −14dB,−0.1dB for optical and mi-
crowave modes have been demonstrated [47–49], respec-
tively. Since these imperfections can be characterized
by Gaussian operations, AQT protocol with imperfec-
tions is still a Gaussian channel, which preserves the
Gaussian character of a Gaussian state [18]. With the
choice of F = η−1/2F?, AQT protocol combined with
the recovery operation U−1

S̃
is effectively a classical-noise

channel [18, 50], which transforms the quadratures as
(xa,xa′) → (xa + ξ,xa′ + ξ′). The added noise (ξ, ξ′) is
characterized by a 2m× 2m covariance matrix [17]

V = νB?B
T
? + µS̃−1F?F

T
?

(
S̃−1

)T
, (6)

with B? =

((
S−1

)
a,h′(

S−1
)
a′,h′

)[(
S−1

)
z,h′

]−1
. Note that V

vanishes when ν → 0 (infinite squeezing) and µ → 0
(perfect homodyne detection), in correspondence with for
the perfect conversion with the ideal AQT.

Performance of adaptive protocol. We use two criteria
to evaluate the performance of AQT in the presence of
imperfections — (1) the average fidelity between input
and output over uniformly distributed coherent states
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FIG. 3. Performance of adaptive protocol with imperfect
squeezing and homodyne detection for two-mode-squeezer
type coupling. (a) & (b), Input-output fidelity of AQT pro-
tocol averaged over all coherent states as a function of im-
perfect squeezing ν, given imperfect homodyne detection of
µ = −20,−10 and 0dB for transmittance T ′ = 1.25 and
T ′ = 10.0, respectively. The dark dotted dashed lines cor-
respond to the threshold fidelity of 1/2. The green dashed
lines correspond to the fidelity achieved by DQT protocol.
(c) & (d), The quantum channel capacity for transmittance
T ′ = 1.25 and T ′ = 10.0, respectively. The channel capacity
vanishes for DQT protocol shown by green dashed lines.

[51, 52] and (2) quantum channel capacity character-
izing the amount of quantum information transmitted
[23, 24, 53]. It is sufficient (not necessary) to demonstrate
quantum transduction, if we have above-threshold aver-
age fidelity (>1/2) or quantum channel capacity (>0).

For example, we consider the minimum AQT with m =
1 input (output) and n = 1 ancilla (idler) modes, which
is based on a converter with beam-splitter type coupling

[e.g., Ĥ = g
(
a†1a2 + h.c.

)
]. We may simply use the

transmittance T ∈ [0, 1] to characterize such a converter.
Given fixed measurement imperfection (µ = 0,−10 or
−20dB), the average fidelity decreases for larger squeez-
ing imperfection (ν) as shown in Fig. 2a,b for different
T = 0.8 and T = 0.1, respectively. For feasible squeez-
ing (ν . 0dB), AQT can outperform DQT (green dashed
lines) and exceed the threshold fidelity of 0.5 (dark dotted
dashed lines) [51, 54]. We can also compute the quantum
channel capacity versus squeezing imperfection as shown
in Fig. 2c,d for T = 0.8 and T = 0.1, respectively. [55]
When the transmittance is low (T < 0.5), DQT is an
anti-degradable channel with zero quantum channel ca-
pacity [25], while AQT can still achieve a finite quantum
channel capacity when µν < 4

9(T+1/T−2) [17].

We also investigated AQT based on a converter
with two-mode-squeezer type coupling [e.g., Ĥ =

g
(
a†1a
†
2 + h.c.

)
] characterized by transmittance T ′ ∈

[0,∞). As shown in Fig. 3a,b, AQT can have fidelity
much higher than the threshold value of 0.5 with feasible
squeezing and homodyne detection, while DQT (green
dashed lines) never exceeds the threshold. Moreover,
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DQT with two-mode-squeezer type coupling is always
an anti-degradable channel [25] with zero quantum chan-
nel capacity. Nevertheless, as shown in Fig. 3c,d, AQT
can maintain a finite quantum channel capacity when
µν < 4

9(T ′+1/T ′+2) [17].

Discussions. AQT can be applied to input with mul-
tiple spectral/temporal modes. For mode converter with
a finite bandwidth (B), the scattering matrix will have
a deviation depending on δω/B for modes with a small
detuning δω from the optimal frequency. DQT requires
δω/B � 1 to avoid decoherence of quantum signals even
when MC is satisfied. In contrast, AQT can maximize
the capacity of every mode we want to use even when
δω/B ∼ 1, by using mode-dependent adaptive control.

We have assumed that we have access to all relevant
ancilla/idler ports in our analysis. In practice, we might
not have access to all these ports (e.g. there exist in-
accessible intrinsic loss channels) for mode conversion of
quantum signals. Nevertheless, AQT can still use the ac-
cessible ports to maximally restore quantum signals. The
influence of inaccessible ports can be further reduced by
optimizing the conversion matrix F , which may inspire
us to find more robust adaptive protocols.

AQT is fundamentally related to other adaptive quan-
tum protocols, such as continuous variable quantum tele-
portation. The standard teleportation scheme needs
two ancilla modes in Einstein–Podolsky–Rosen paradox
(EPR) state, two idler modes for homodyne detection,
and adaptive displacement of the output [38]. Since
the EPR state can also be obtained by interfering two
squeezed ancilla modes with a balanced beam splitter,
the teleportation scheme can be regarded as a special re-
alization of AQT with m = 1 input (output) and n = 2
ancilla (idler) modes. There are other variations combin-
ing squeezing and adaptive control [56, 57], which can
also be regarded as special realizations of our AQT pro-
tocol. In addition, AQT can be extended to the situa-
tion of quantum state transfer between d-level systems,
by replacing the symplectic mode converter for continu-
ous variable systems [41] with the Clifford gate coupling
the d-level systems. For example, the minimum AQT
for d = 2 corresponds to the one-bit teleportation circuit
[58]. Moreover, we may generalize AQT with continu-
ous variable encoding for the input and ancilla modes,
which will enable us to achieve mode conversion as well
as quantum error correction [59].

In conclusion, we have demonstrated how adaptive
control can be a powerful tool for quantum transduc-
tion. In particular, the adaptive protocol can bypass
the matching condition that is vital for previous direct
protocols. The adaptive protocol can boost the aver-
aged fidelity and quantum channel capacity, while be-
ing robust against practical imperfections. The adaptive
approach opens a new pathway of converting quantum
signals among optical, microwave, mechanical, and vari-
ous other physical platforms, leading towards the hybrid

quantum networks.

We would like to thank Michel Devoret, Konrad Lehn-
ert, Wolfgang Pfaff, Rob Scheolkopf, Hong Tang for
discussions. We also acknowledge support from the
ARL-CDQI, ARO (W911NF-14-1-0011, W911NF-16-1-
0563), AFOSR MURI (FA9550-14-1-0052, FA9550-15-1-
0015), ARO MURI (W911NF-16-1-0349), NSF (EFMA-
1640959), Alfred P. Sloan Foundation (BR2013-0049),
and Packard Foundation (2013-39273).

[1] H. J. Kimble, Nature 453, 1023 (2008).
[2] L.-M. Duan and C. Monroe, Rev. Mod. Phys. 82, 1209

(2010).
[3] C. P. Sun, L. F. Wei, Y.-x. Liu, and F. Nori, Phys. Rev.

A 73, 022318 (2006).
[4] T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Sim-

monds, and K. W. Lehnert, Nature 495, 210 (2013).
[5] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, Phys.

Rev. Lett. 113, 156401 (2014).
[6] Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Ya-

mazaki, K. Usami, and Y. Nakamura, Science 349, 405
(2015).

[7] M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).
[8] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Rev.

Mod. Phys. 82, 1041 (2010).
[9] A. H. Safavi-Naeini and O. Painter, New J. Phys. 13,

013017 (2011).
[10] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt,

Rev. Mod. Phys. 86, 1391 (2014).
[11] R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak,

R. W. Simmonds, C. A. Regal, and K. W. Lehnert, Nat.
Phys. 10, 321 (2014).

[12] A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N.
Cleland, Appl. Phys. Lett. 109, 033107 (2016).

[13] K. Y. Fong, L. Fan, L. Jiang, X. Han, and H. X. Tang,
Phys. Rev. A 90, 051801 (2014).

[14] J. S. Pelc, L. Yu, K. De Greve, P. L. McMahon, C. M.
Natarajan, V. Esfandyarpour, S. Maier, C. Schneider,
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