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In an ion trap quantum computer, collective motional modes are used to entangle two or more
qubits in order to execute multi-qubit logical gates. Any residual entanglement between the internal
and motional states of the ions results in loss of fidelity, especially when there are many spectator
ions in the crystal. We propose using a frequency-modulated (FM) driving force to minimize such
errors. In simulation, we obtained an optimized FM two-qubit gate that can suppress errors to less
than 0.01% and is robust against frequency drifts over ±1 kHz. Experimentally, we have obtained
a two-qubit gate fidelity of 98.3(4)%, a state-of-the-art result for two-qubit gates with 5 ions.

Ion traps are a leading candidate for the realization
of a quantum computer. Magnetically insensitive qubit
energy splittings, long coherence times, and high-fidelity
state initialization and detection [1, 2] prove to be signifi-
cant advantages for trapped ion qubits. Individual qubit
addressing and single-qubit gates with error rates on the
order of 10−5 per gate have been achieved [1, 3–5]. Mul-
tiple qubits can be entangled through state-dependent
forces driven by external fields [6–9], and for exactly two
ions, entangling gate fidelities routinely exceed 99% and
in some cases 99.9%. [10–15].

With increasing ion number, however, the motional
modes bunch in frequency, which means exciting only
a single motional mode becomes prohibitively slow. Al-
ternatively, the state-dependent driving forces can couple
to all modes of motion. A number of schemes have been
proposed for disentangling the internal qubit states from
the motional states of all modes by introducing varia-
tions to the driving force during the gate. One way to
achieve this goal is amplitude modulation (AM) of the
driving field [16, 17]. Several experiments have adopted
this method and have achieved a 2 to 5% error [18–20].
Discrete phase modulation (PM) has also been proposed
for the same purpose, but the number of pulses in the se-
quence increases exponentially with the number of ions
[21]. Moreover, discrete changes in laser amplitude and
phase are hard to implement physically, especially when
we perform fast gates.

We propose a novel decoupling method through con-
tinuous frequency modulation (FM), theoretically equiv-
alent to continuous PM, which involves only small and
smooth oscillations of the detuning of the applied field.
First, we explain the coherent displacement of the ion
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chain’s motional modes during the Mølmer-Sørensen
(MS) gate. Then, we describe how the residual displace-
ment of the ions can be minimized in a way which is
robust to small changes in trap frequency. Next, we ex-
perimentally demonstrate this gate in a chain of 5 171Yb+

ions. Finally, we discuss extensions of the method to
larger ion chains, with 17 ions as an example.

To entangle two qubits with the MS gate, we ap-
ply a state-dependent driving force near the sideband
frequencies. As a result, each motional mode expe-
riences a coherent displacement characterized by the
operator[16, 17]:

D̂(α̂k) = exp
(
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†
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)
,

α̂k(t) =
Ω

2
(ηi,kσ

i
φ + ηj,kσ

j
φ)

∫ t

0

eiθk(t
′)dt′

(1)

where Ω is the carrier coupling strength, ηi,k and ηj,k are
the Lamb-Dicke parameters of ions i and j with respect
to mode k, σiφ and σjφ are bit-flip Pauli operators for the

addressed ions, and θk(t) =
∫ t
0
δk(t′)dt′ and δk(t) are the

phase and detuning of the driving force relative to mode
k. If the qubits are at the +1 eigenstate of both σiφ and

σjφ, the displacement is:

αk(t) =
Ω

2
(ηi,k + ηj,k)

∫ t

0

eiθk(t
′)dt′ (2)

We may visualize the trajectory of αk(t) over time by
plotting it in the complex plane. This is the phase space
trajectory (PST) of the motional mode k. For a total
gate time τ , αk(0) = 0 and αk(τ) are the beginning and
end points of the PST.

Due to the state-dependent nature of α̂k(t), different
eigenstates of σiφ and σjφ follow different PSTs. If any of
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FIG. 1. Robust (violet, solid) and non-robust (blue, dash-
dotted) FM pulses for 2-qubit gate optimized for 5 ions, both
with a gate time of 90 µs. Green lines are experimental side-
band frequencies, labeled 1 to 5, the first one being the com-
mon mode frequency. The pulses are designed to be sym-
metric in time. The dots and diamonds are the vertices of
the frequency and represent the control parameters allowed
to vary in our optimization algorithm.

the αk(τ) is non-zero, there is residual entanglement be-
tween the internal and motional state spaces, which leads
to a mixed internal state. This lowers the overall gate fi-
delity (F = |〈ψfinal|ψideal〉|2). Given that |αk| � 1, we
find that the consequent gate error may be estimated as:

ε ≡ 1− F ≈
N∑
k=1

|αk(τ)|2 (3)

Minimizing |αk| is therefore the most straightforward
criterion for an optimized gate. However, the gate is
sensitive to small drifts in sideband frequencies (δk →
δk + δ1 and δ1 � 1/τ), an imperfection which we often
observe in experiments. The frequency dependence of
αk(τ) can be canceled to the first order by setting the
time-averaged position of αk(t) to zero.

αk,avg ∝
∫ τ

0

∫ t

0

eiθk(t
′)dt′dt = 0 (4)

It turns out that if we only consider symmetric pulses
(δk(τ − t) = δk(t)), minimizing αk,avg also minimizes
αk(τ).

In our scheme, we modulate the driving frequency dur-
ing the gate to minimize the gate error. The trajectory
αk(t) moves with constant speed but varying angular rate
δk(t). Therefore, FM allows us to control the curvature
and thus the shapes and end points of the PSTs. We let
the frequency assume a symmetric, oscillatory pattern
(see example in Fig. 1). The vertices (local maxima and
minima) of the oscillations are set to be evenly spaced in
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FIG. 2. Simulated PSTs with: (a) no frequency error and
(b) -1 kHz sideband drift, using the FM pulses shown in Fig.
1. The end points for the robust pulse (circles) return to the
starting point with the drift, whereas those for non-robust
(diamonds) fail to do so. The horizontal and vertical axes

represent the quadratures xk ∼ a†k + ak and pk ∼ i(a†k − ak)
respectively.

time and are the only variable control parameters in our
optimization. The vertices are connected with sinusoidal
functions, which leads to a smooth and continuous fre-
quency profile. The function to be minimized is |αk,avg|2
for robust pulses and |αk|2 for non-robust. The number of
vertices used is increased until we successfully converge
to a solution with errors much lower than 0.01%. De-
tailed derivations for equations (3) and (4) as well as the
optimization process are provided in the Supplemental
Material.

Both robust and non-robust versions of the gate are
tested on our 5-ion quantum computer. In our setup, 5
171Yb+ ions are held in an rf Paul trap with a radial trap
frequency of 3.045 MHz and an average ion separation of
about 5 µm. Our qubit is defined by the ground hy-
perfine states 2S1/2, |F = 0〉 and 2S1/2, |F = 1〉 with an
energy splitting of 2π × 12.642821 GHz [1]. Initially, all
ions are cooled to close to the motional ground state (≈
0.1 phonons) and then optically pumped to the |0〉 state.
Quantum gates are implemented using a beatnote gen-
erated by counter-propagating Raman laser beams that
are capable of addressing any individual qubit [18].
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FIG. 3. (a) State population and (b) parity scan of the two
qubits after the optimized and robust two-qubit gate shown
in Fig. 1, indicating a fidelity of 98.3(4)%.

The 5 transverse motional sidebands are experimen-
tally determined and used to find the optimal FM pulses
for the 2-qubit gate. We increase the number of oscilla-
tions (degrees of freedom) for optimization until we find
a pulse with low errors. With a fixed gate time of 90
µs, the optimized robust pulse consists of 13 oscillations,
whereas the non-robust version has only 9 (Fig. 1). The
driving frequency crosses the sidebands multiple times,
which contrasts with other implementations of MS gates
that avoid sideband resonance.

PSTs are plotted for no frequency error and for a 1 kHz
frequency drift for both robust and non-robust pulses in
Fig. 2. With the drift, the end points of the robust tra-
jectory (circles) stick to the origin, whereas those of the
non-robust (diamonds) deviate from the starting point,
causing an estimated error of about 0.5%. This proves
the importance of the robustness criterion.

We present the results on entangling two neighboring
ions on one edge of the ion chain in the robust case. The
output population and parity are measured and shown in
Figs. 3(a) and (b), giving a SPAM-corrected fidelity of
98.3(4)%. This is among the highest fidelities achieved
for multi-qubit gates in the presence of spectator ions
[18]. Using the robust gate, we also successfully perform
a CNOT gate with 98.6(7)% fidelity and generate a 3-
qubit GHZ state with 92.6(3)% fidelity. The 1% error
level observed is partially attributed to laser intensity
fluctuations (∼2%), which breaks the assumption of con-
stant laser power during the gate.

In order to lower the overall laser intensity Ω, each 90
µs pulse is performed twice for each gate, with a com-
bined gate time of 180 µs. The Ω required is 2π × 600
kHz in carrier Rabi frequency, which is much larger than
2π × 151 kHz as expected by simulation. The discrep-
ancy is most likely due to an overestimate of the Lamb-
Dicke parameters in our simulation. The high power used
worsens other error sources such as Raman scattering,
off-resonant excitation, and crosstalk with other qubits
[11, 12].

The theoretically estimated gate error is plotted as a

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

Robust

Non-robust

Extra detuning (kHz)

S
im

u
la
te
d
ga

te
er
ro
r
(1
0
−
4
)

−6 −4 −2 0 2 4 6
0.6

0.7

0.8

0.9

1

Robust

Non-robust

Detuning Offset (kHz)

E
v
en

-P
a
ri

ty
P

o
p
u
la

ti
o
n

FIG. 4. (a) Simulated gate error and (b) Experimental even-
parity populations of the two qubits after the gate for a range
of detuning offsets. The robust gate has a significantly better
performance than non-robust in both theory and experiment

function of frequency drift in Fig. 4(a) to compare the
robust pulse with non-robust. A typical error threshold
for high-fidelity gates is 0.01%. The robust pulse can
tolerate frequency errors up to ±1.5 kHz, whereas the
non-robust less than ±0.1 kHz. The non-robust pulse
has a quadratic dependence on the drift, whereas the ro-
bust version has a quartic dependence. This is expected,
since error is proportional to displacement squared, and
the first-order dependence of the displacement on drift is
canceled out in the robust case.

To determine the impact of sideband drifts, we exper-
imentally run the two gates over a range of symmetric
detuning offsets (Fig. 4(b)). The robust version has even-
parity population higher than 90% for frequency offsets
up to ±5 kHz, whereas the non-robust gate has signifi-
cantly lower fidelity and tolerance towards frequency er-
rors (within ±1 kHz), confirming that the robust method
improves fidelity significantly by canceling errors due to
frequency drifts.

To test the scalability of our method, we run a similar
optimization for 17 ions, motivated by the 17-qubit sur-
face code proposed for quantum error correction [22–25].
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FIG. 5. Optimized FM two-qubit gate for 17 ions. The side-
band frequencies (green) are obtained by simulations

The sideband frequencies are calculated from a simulated
anharmonic ion trap with an average ion separation of
about 3.5 µm. Such high ion density may be challenging
to realize with current technology, but that does not pose
a fundamental physical limit to experiments.

The robust FM pulse obtained consists of 47 oscilla-
tions within a gate time of 250 µs (Fig. 5). The gate can
tolerate a frequency drift of 500 Hz for an error thresh-
old of 0.01%. Apparently, the gate is more sensitive to
frequency errors due to an increased number of motional
modes and a longer gate time.

The power required (Ω) for the two-qubit gate ranges
from 2π × 115 kHz for neighboring ions to 2π × 249 kHz
for the furthest separated ions (≈ 1:2 ratio between low-
est and highest). This is an encouraging result. Previous
simulation results indicate that two-qubit gate time and
power increase very quickly with the distance between
the ions. But by using a flexible and well-designed opti-
mization program, we have found an FM pulse that can
overcome this difficulty.

We have shown that we can perform high-fidelity two-
qubit gates in a 5-ion trap using frequency modulation.
In theory, the optimized robust FM pulse can suppress
errors in gate fidelities to below 0.01% for up to a ±1.5
kHz frequency offset for 5 171Yb+ ions. The gate is used
to maximally entangle two ions in experiment and has a
fidelity of 98.3(4)%. We speculate that in the near future,
we will attain over 99.9% fidelity previously achieved with
2-ion chains [10–12].
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and Gang Shu for useful discussions. This work was sup-
ported by the Office of the Director of National Intelli-
gence - Intelligence Advanced Research Projects Activity
through ARO contract W911NF- 10-1-0231 and the ARO
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