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We show that the topological index of a wavefunction, computed in the space of twisted boundary phases,
is preserved under Hilbert space truncation, provided the truncated state remains normalizable. If truncation
affects the boundary condition of the resulting state, the invariant index may acquire a different physical in-
terpretation. If the index is symmetry protected, the truncation should preserve the protecting symmetry. We
discuss implications of this invariance using paradigmatic integer and fractional Chern insulators, Z2 topological
insulators, and Spin-1 AKLT and Heisenberg chains, as well as its relation with the notion of bulk entanglement.
As a possible application, we propose a partial quantum tomography scheme from which the topological index
of a generic multi-component wavefunction can be extracted by measuring only a small subset of wavefunction
components, equivalent to the measurement of a bulk entanglement topological index.

Introduction—The investigation of topological phases and
their classification [1–4] has grown into a major endeavor
in condensed matter physics, thanks to rapid advancements
in material realization [5, 6] and experimental platforms for
“quantum simulation” such as ultra cold atomic systems [7–
9]. The appeal of topology is that related physical quantities,
for example quantized Hall conductance [10] and charge po-
larization [11, 12], can be formulated as discrete topological
indices, which are thus robust against continuous deforma-
tions of the system.

A topological index is fundamentally a property of a wave-
function. Yet apart from free fermions and a few exactly solv-
able models, it is impractical to obtain an exact wavefunc-
tion through the diagonalization of a Hamiltonian. One al-
ternative is to build candidate wavefunctions through projec-
tive construction, whereby a parent state defined in a larger
Hilbert space is linked to a projected state in a smaller, trun-
cated Hilbert space [13–15]. Both the parent and the truncated
Hilbert spaces can play the role of the physical space. For ex-
ample, a matrix product state is constructed by projecting a
parent state, defined in a tensor product of site Hilbert spaces,
onto bond Hilbert spaces, where truncation in bond dimension
is implemented according to the entanglement content [16]. In
this case, the parent space is physical, while the projected state
offers a more economical description suitable for numerical
solution. In parton-type constructions [17], on the other hand,
one first fractionalizes the physical degrees of freedom into
partons, with which a mean field state can be written down in
the enlarged parton Hilbert space, then a Gutzwiller type pro-
jection is employed to pull the state back to the physical space.
In this case, the truncated space is physical, while the enlarged
space provides a more natural platform for exotic phenom-
ena such as fractionalization. Treated as variational ansatz,
the projected wavefunctions thus obtained can be further op-
timized for better approximation of target states, yet for the
issue of topological characterization, a fundamental question
remains rarely touched: how does the truncation procedure

itself affect topology?

In this work, we investigate the connection between Hilbert
space truncation and topology on the wavefunction level.
Specifically, we address the question: what is the relation be-
tween the parent and the projected wavefunctions in terms
of their topological index? The topological indices we will
consider are those that can be computed via the formalism of
twisted boundary phases [18], such as integer and fractional
Chern numbers, quantized Berry phase, and various symmetry
protected Z2 indices. We will assume that the parent state is a
gapped eigenstate |Ψ(κ)〉 of a many-body Hamiltonian, hence
it has well-defined topological indices. Here κ ≡ (κ1, κ2, · · · )
are the boundary phases implemented as a+

r+Ni êi
= a+

r eiκi ,
where a+

r is a fermionic/bosonic creation operator or a spin
raising operator on lattice site r, and Ni is the linear size along
direction êi. The full parameter space of κ, with κi ∈ [0, 2π)∀i,
will be referred to as a “Brillouin Zone” (BZ). We will show
that the topological index of |Ψ〉 is fully preserved by its trun-
cated version, |Ψ̃〉 = P|Ψ〉/

√
〈Ψ|P|Ψ〉, if both indices are com-

puted using the same κ BZ, provided the κ-independent pro-
jection P fulfills the following conditions: (1) At no point in
the κ BZ does the truncated wavefunction become a null vec-
tor, whereby information of the parent state is fully lost. (2)
For a parent state belonging to symmetry protected topologi-
cal classes, the truncation should also preserve the protecting
symmetry in order for the classification to remain meaning-
ful. This is consistent with recent works on the node structure
in wavefunctions overlaps [19, 20], and we discuss their re-
lation and distinction in the SM [21] Note that under certain
truncation schemes, κ may no longer correspond to physical
boundary phases for the truncated state. In such cases, trun-
cation invariance remains true mathematically, but acquires a
different physical interpretation, and may place the truncated
state in a different topological class from the parent state, see
later discussion on the parton construction of fractional Chern
insulators.

Truncation invariance of Chern number and related topo-
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logical indices—We begin by constructively showing that the
Chern number is invariant under Hilbert space truncation.
This serves as a generic proof that any topological index ob-
tainable from a Chern number calculation will remain invari-
ant under such a truncation. Calculation of the Chern number
is at the heart of topological classification of two-parameter-
family wavefunctions. In addition to the integer and fractional
quantum Hall effect [10, 18, 22], it can also be used to clas-
sify symmetry protected topological (SPT) states by restrict-
ing its calculation to a subset of states or a reduced parameter
space, examples include spin Chern number for time-reversal-
invariant TIs [23–26], mirror Chern number [27] and more
generally Chern numbers over 2D high symmetry manifold
within a 3D single particle BZ for crystalline TIs [28]. We
will discuss its implication on fractional Chern insulator states
later in the text. A step by step illustration of the proof to be
discussed below can be found in the SM [21] using a 3-band
Hofstadter model. Further examples of band Chern insulators
and Z2 TIs are also provided in the SM [21].

Consider a gapped eigenstate of a many-body Hamiltonian
in two dimensions, |Ψ(κ)〉 =

∑M
i=1 Ψi(κ)|Bi〉, where κ = (κx, κy)

are twisted boundary phases, κx,y ∈ [0, 2π). {|Bi〉} are or-
thonormal many-body bases independent of κ, and Ψi(κ) =

〈Bi|Ψ(κ)〉 is periodic in κ. The Chern number of Ψ is C =
1

2π

!
BZ d2κ∇κ × 〈Ψ|i∇κ|Ψ〉. We first show that C can be com-

puted using any two components of |Ψ(κ)〉, say Ψi1 (κ) and
Ψi2 (κ), provided they do not vanish at the same κ point(s).
We adopt the gauge fixing scheme of Ref. [22]. Assume for
simplicity that a component Ψi1 (κ) has a single zero in the en-
tire BZ at, say, κ∗. Cases with multiple such zeros will be
discussed later. Divide the BZ into two patches, where one
patch, denoted as R2, is an infinitesimal neighborhood around
κ∗, and the remainder of the BZ is the other patch, denoted as
R1. We choose the gauge of |Ψ〉 such that

Ψia (κ) > 0 for κ ∈ Ra , a = 1, 2 . (1)

The gauge of |Ψ〉 is therefore smooth in both R1 and R2, but
has a phase mismatch across their interface,

|Ψ(κ∩)〉R1 = eiλ(κ∩)|Ψ(κ∩)〉R2 , κ∩ ∈ R1 ∩ R2 , (2)

where subscripts Ri denote gauge choice. In gauge R1, one
can write (Ψi1 ,Ψi2 )R1 = (r1, r2eiχ) with r1,2 > 0 and real χ.
Then under gauge R2, (Ψi1 ,Ψi2 )R2 = (r1e−iχ, r2). By Eq. 2, one
can identify λ = χ, viz.,

λ(κ∩) = Arg
[
Ψi2 (κ∩)/Ψi1 (κ∩)

]
, (3)

which is gauge invariant. The BZ integral for computing C is
now a sum over the two patches R1,2, and by Stokes Theorem,
each patch contributes a line integral of the Berry connection
vector over the patch’s boundary, thus

C =
1

2π

∑
i=1,2

∮
∂Ri

dκ∩ · 〈Ψ|i∇κ∩ |Ψ〉Ri = w[λ] , (4)

where w[λ] = 1
2π



∂R2

dκ∩ · ∂κ∩λ is the winding number of the
phase mismatch λ(κ∩) in the counter-clockwise direction—
note that the two boundaries, ∂R1 and ∂R2, are identical but in
opposite directions. If Ψi1 has multiple zeros, one can define
a phase mismatch λa around the ath zero, and C =

∑
a w[λa].

Eqs. 3 and 4 together establish that the Chern number of |Ψ〉
can be computed using any two of its components.

Now consider a truncated state |Ψ̃〉 obtained by taking a
subset of wavefunction components from |Ψ〉 and renormal-
izing. Its Chern number can be computed in the same way
using Ψ̃i1 and Ψ̃i2 . Since both are simply rescaled from their
pre-truncation values, the phase mismatch (Eq. 3) is not af-
fected by the truncation, hence |Ψ̃〉 and |Ψ〉 have the same
Chern number.

Truncation invariance of quantized Berry phase—
Symmetry-protected 1D topological phases exhibit a robust
Z2 index due to the quantization of the Berry phase to either
0 or π. We now prove the truncation invariance of the Z2
class protected by inversion-like symmetries. Examples in
this class include the Su-Schrieffer-Heeger model, Kitaev’s
p-wave superconductor, and Spin-1 antiferromagnetic chain.
Consider a parent many-body Hamiltonian H(κ) = H(κ + 2π),
where κ ∈ [0, 2π) is the boundary phase. Inversion-like
invariance is defined as S H(κ)S −1 = H(−κ) where the unitary
S represents the symmetry operation. At the symmetry
invariant points κSIP ∈ {0, π}, S commutes with H(κSIP),
hence the ground state of H, assumed unique, must also be
a symmetry eigenstate, S |Ψ(κSIP)〉 = sκSIP |Ψ(κSIP)〉, where
sκSIP = ±1. Hughes et al showed [29] that the Berry phase of
|Ψ(κ)〉 can be computed from the symmetry eigenvalues at
κSIP, eiγ = s0sπ. Now consider a truncation P that preserves
inversion, [P, S ] = 0. It follows that the truncated state
P|Ψ(κSIP)〉 remains an inversion eigenstate with the same
eigenvalue sκSIP as the parent state |Ψ(κSIP)〉. Hence, the Berry
phase also remains invariant, provided P does not annihilate
|Ψ(κ)〉 for any κ.

Parton construction of fractional Chern insulators—
Truncation invariance of the Chern number is closely related
to the parton construction of fractional Chern insulator (FCI)
states [30–34]. Consider the SU(m) FCI state [30, 31], a lat-
tice analogue of the Laughlin 1

m state. One writes the electron
(or boson) operator as a product of m partons, cr =

∏m
α=1 f (α)

r .
Each parton species is subjected to a tight binding Hamil-
tonian with lowest band Chern number 1. Filling one band
per species then leads to a parton mean field state |ΨMF〉 with
Chern number CMF = m by construction. The FCI state is
obtained by Gutzwiller projecting |ΨMF〉 back to the electron
Hilbert space, |Ψel〉 ∝ PG |ΨMF〉, that is, 0 or m partons per
lattice site. From truncation invariance, |Ψel〉 and |ΨMF〉 have
the same Chern number over a parton BZ, κx,y ∈ [0, 2π). Here,
κx,y are parton twisted boundary phases, f (α)

r+Ni êi
= eiκi f (α)

r . The
corresponding boundary conditions for electrons are cr+Ni êi =∏m

α=1 f (α)
r+Ni êi

= eimκi cr, hence one parton BZ is equivalent to
m2 electron BZs. Thus although the Chern number remains
invariant after truncation when computed using the parton BZ,
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FIG. 1. Chern number density in the space of parton boundary phases
for (a) the parent (untruncated) parton mean-field state, and (b) the
bosonic fractional Chern insulator state obtained via Gutzwiller pro-
jection. In both cases, the Chern number density integrates to the
same CMF = 2 over the parton BZ, as required by truncation invari-
ance. The physical Hall conductance of the FCI state is given by
C =

CMF
m2 = 1

2 with m = 2 parton species, see text for detail. Calcula-
tion is done with a 4 × 4 lattice and a 40 × 40 grid of (κx, κy).

the physical Hall conductance is related to the Chern number
per electron BZ [18], and we recover the fractional Hall con-
ductance of |Ψel〉 as C = CMF

m2 = 1
m .

In Fig. 1, we use the π-flux square lattice model of Ref. [32]
as the mean field Hamiltonian for m = 2 parton species, and
plot the Chern number density for both the untruncated parton
mean field state |ΨMF〉 and the bosonic FCI state obtained by
Gutzwiller projecting |ΨMF〉 to 0 or 2 partons per site. In both
cases, the Chern number density integrates to CMF = 2 over
the parton BZ, as guaranteed by truncation invariance. The
physical Hall conductance is given by C = CMF

m2 = 1
2 .

We note that numerical calculations of the fractional Chern
number of Gutzwiller-projected parton states are severely lim-
ited by system size [33]. Our theorem establishes such re-
sults on a more general ground, without system size restric-
tion. The same argument applies to the ground states of non-
Abelian FCIs as well (see SM [21]), although its connection
with quasi-particle statistics remains an open question.

Spin-1 antiferromagnetic chain—We use the Spin-1 AKLT
and Heisenberg models to illustrate truncation invariance of
the quantized Berry phase [35, 36]. The Hamiltonian is
H(κ) =

∑N
i=1 Si · Si+1 + β(Si · Si+1)2, where κ is a bound-

ary phase: S ±N+1 = S ±1 e∓iκ and S z
N+1 = S z

1. Define inver-
sion I as ISiI

−1 ≡ SN+1−i, then H(κ) is inversion symmet-
ric, IH(κ)I−1 = H(−κ). For |β| < 1, its gapped ground
state |Ψ(κ)〉 has a nontrivial Z2 index characterized by a quan-
tized π Berry phase. We first consider the AKLT β = 1

3 , for
which |Ψ(κ)〉 can be obtained analytically [37, 38], |Ψ(κ)〉 =∏N

i=1(a†i b†i+1−b†i a†i+1)|∅〉, where a and b are Schwinger bosons,

S +
i = a†i bi, S z

i = 1
2 (a†i ai − b†i bi), a†i ai + b†i bi

!
= 2, |∅〉 is

the boson vacuum, and (aN+1, bN+1) = (a1, b1e−iκ). Now
project |Ψ(κ)〉 onto two inversion conjugate spin configura-
tions |B〉 = |sz

1, s
z
2, · · · , s

z
N〉 and |B̄〉 = I|B〉, sz

i ∈ {0,±1}.
To have 〈B|Ψ(κ)〉 , 0, the nonzero spins in |B〉 must have

bx

by

φ

 
 

FIG. 2. Projected Heisenberg ground state. (Top) Schematic plot
showing the helical precession of the Bloch vector parametrizing the
projected state, |Ψ̃〉 = cos θ

2 |B〉 + sin θ
2 eiϕ|B̄〉. (Bottom) Spherical

angles ϕ and θ. Over the cycle κ = 0 → 2π, θ remains a constant
π
2 , and ϕ(κ) changes by −6π, hence the winding number of b̂ is −3,
consistent with a Berry phase of π(mod 2π). N = 12 spin-1 sites are
used. The ground state is truncated to the many-body basis |B〉 =

| ↑↑↑↑ 0 ↓↓↓↓↑↓ 0〉 and its inversion partner.

alternating signs, a manifestation of string order [39, 40].
One can show that the normalized truncated wavefunction
is |Ψ̃(κ)〉 = 1

√
2
(|B〉 + (−1)Neisκ|B̄〉), where s is the leftmost

nonzero spin in configuration |B〉. This form is largely fixed
by the inversion conjugacy between |B〉 and |B̄〉, which en-
sures that (1) they have the same number of nonzero spins,
and hence are of equal absolute weight, and (2) their leftmost
nonzero spins are opposite, which leads to the relative phase
eisκ. Spoiling either condition will lead to a non-quantized
Berry phase. See SM [21] for derivation. Parametrized on
a Bloch sphere, |Ψ̃〉 lies on the equator and manifestly has a
winding number wΨ̃ = s, hence its Berry phase is sπ ≡ π
mod 2π.

When β , 1
3 , the Hamiltonian is no longer a projection

operator onto bond singlets, hence there is a proliferation of
spin configurations in the ground state that violate the sign-
alternating string order, and the winding number of a truncated
state, wΨ̃, is not restricted to ±1. Nevertheless, since inversion
symmetry is intact, the post-truncation Berry phase remains
π, indicating that wΨ̃ is an odd integer. Using the Heisenberg
model (β = 0), we have numerically verified that (1) if |B〉
and |B̄〉 are string ordered, the winding number remains ±1; if
not, the winding number is an odd integer but not necessarily
±1, see Fig. 2. (2) If we instead twist the Hamiltonian on
the bond between S` and S`+1, the new winding number w(`)

Ψ̃

is related to wΨ̃ via a “Gauss law”, w(`)
Ψ̃
− wΨ̃ = −2

∑`
n=1 sz

n,
suggesting that sz

n = ±1 in a given spin configuration act as
charge ∓2 sources of winding numbers. (3) For projections
that violate inversion symmetry, the Berry phase is in general
not quantized any more. These results are numerically robust
even though the typical weight on a many-body basis state is
exponentially small (∼ 1

√
3N

).
Relation with bulk entanglement—Connection between

Hilbert space truncation and topology has previously been
studied from the perspective of quantum entanglement [29,
41–47]. We briefly discuss the relation between entanglement
and wavefunction truncation in the context of bulk entangle-
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ment [48–52] due to a sublattice bipartition. Consider a single
occupied Bloch band |ψk〉 with momentum k. Generalization
to multiple occupied bands is straightforward. The Schmidt
decomposition of |ψk〉 into two sublattice groups A and B is

|ψk〉 =
√

fk|ψ̃A,k〉 ⊗ |∅B〉 +
√

1 − fk|∅A〉 ⊗ |ψ̃B,k〉, (5)

where |∅A(B)〉 and |ψ̃k,A(B)〉 are respectively the vacuum and the
truncated state in part A(B), fk = 〈ψk|PA|ψk〉. |ψ̃k,A〉 is thus an
entanglement eigenstate for part A in the single particle sec-
tor, with entanglement eigenvalue fk. For a partition with NA

sublattices in A, there should be a total of NA (single particle)
entanglement levels, thus NA − 1 of them are identically zero.
If fk , 0∀k, it is gapped from the remainder, hence one can
introduce a topological index, such as an entanglement Chern
number [49], for the corresponding entanglement eigenstate,
i.e., the truncated state |ψ̃k,A〉. Truncation invariance thus im-
plies that the entanglement topological index must be identi-
cal to the topological index of the parent state if (1) the bulk
entanglement spectrum is gapped from zero, and (2) for SPT
parent states, the entanglement partition preserves the protect-
ing symmetry.

Measuring topological index via partial tomography—
Truncation invariance of the topological index is experimen-
tally relevant. Recent breakthrough in quench-based quan-
tum tomography has made it possible to extract topological
indices of two-component Bloch wavefunctions by perform-
ing a full measurement of both wavefunction components over
the entire BZ (of Bloch momenta) [53, 54]. We now dis-
cuss a quench-based partial quantum tomography for a multi-
component Bloch wavefunction |ψ(k)〉 =

∑N
a=1 ψa(k)|a〉, from

which two chosen components ψa1 (k) and ψa2 (k) can be mea-
sured. Here a labels sublattices within a unit cell. Com-
bined with truncation invariance, this allows us to determine
the Chern number of the full state |ψ(k)〉. We follow the ex-
perimental protocol of Refs. [53, 54]. Assume at t = 0 the
system has been prepared as a filled Bloch band described by
|ψ(k)〉. For 0 < t < th, we quench the system with a flat
band Hamiltonian H(k) =

∑N
a=1 εa|a〉〈a|. The values of {εa}

will be specified later. At the end of the quench, one has
|ψ(k, th)〉 =

∑N
a=1 ψa(k, th)|a〉 where ψa(k, th) = ψa(k)e−iεath .

The system is then released for a time of flight (TOF) mea-
surement. The resulting momentum distribution from the TOF
analysis is given by [53] n(k, th) =

∣∣∣∑N
a=1 ψa(k, th)

∣∣∣2, and by
monitoring n(k, th) as a continuous function of th, contribu-
tions from different ψa(k) (at t = 0) can in principle be re-
solved.

To perform a partial tomography on, say, the first two sub-
lattices a = 1, 2, we set εa for all other sublattices a > 2 to a
common level E, and require that ε1 , ε2 , E. Consequently,
the momentum distribution n(k, th) has only three distinctive
frequency modes,

ω1(2) = ε1(2) − E , ω3 = ε2 − ε1 , (6)

and from the TOF experiment, one can extract the correspond-

ing Fourier coefficients Ai, Bi,

n(k, th) = A0(k) +

3∑
i=1

[
Ai(k) cos(ωith) + Bi(k) sin(ωith)

]
.

(7)

Parametrize ψ1 = u sin θ
2 and ψ2 = −u cos θ

2 eiϕ, u > 0. The
overall scale u does not enter the topological index evaluation.
The Bloch vector angles ϕ and θ are

tanϕ(k) =
B3(k)
A3(k)

, tan
θ(k)

2
=

√
A2

1(k) + B2
1(k)

A2
2(k) + B2

2(k)
, (8)

see SM [21] for derivation and ϕ,θ plots of a truncated Hof-
stadter band. Eq. 8 allows us to extract the projected state
|ψ̃〉 = (ψ1

u ,
ψ2
u )t, from which the Chern number of the full state

can be computed. In fact, since |ψ̃〉 is also a bulk entangle-
ment eigenstate, this is a measurement protocol for the entan-
glement Chern number of a sublattice truncation as discussed
in the previous section.

Conclusion—We have shown that a normalizable truncated
wavefunction preserves the topological index of its parent
state, if both indices are computed in the space of the parent
state’s twisted boundary phases. The physical interpretation
of the index may change for the truncated state if its boundary
condition is affected by the truncation, and we gave an ex-
ample using the parton construction of the SU(m) FCI state.
We also showed that a sublattice-truncated state can be iden-
tified as an entanglement eigenstate resulting from a sublat-
tice bipartition, revealing a connection between wavefunction
truncation and quantum entanglement. Our finding provides
a new perspective on the topological structure of wavefunc-
tions, and indicates that mathematical specification of a topo-
logical index, and perhaps even its physical manifestation, can
be achieved in a much smaller Hilbert space, such as the 2-
sublattice space that may be probed by the partial tomography
scheme discussed in the text.
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