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We realize a spin-orbit interaction between the collective spin precession and center-of-mass mo-
tion of a trapped ultracold atomic gas, mediated by spin- and position-dependent dispersive coupling
to a driven optical cavity. The collective spin, precessing near its highest-energy state in an ap-
plied magnetic field, can be approximated as a negative-mass harmonic oscillator. When the Larmor
precession and mechanical motion are nearly resonant, cavity mediated coupling leads to a negative-
mass instability, driving exponential growth of a correlated mode of the hybrid system. We observe
this growth imprinted on modulations of the cavity field and estimate the full covariance of the
resulting two-mode state by observing its transient decay during subsequent free evolution.

The description of a harmonic oscillator with neg-
ative mass applies to collective excitations in diverse
non-equilibrium systems, such as solid-state crystals [1],
plasmas [2, 3], superfluids [4], and cold atomic gases
[5, 6]. The total Hamiltonian describing a negative-mass
harmonic oscillator has the opposite sign of that of a
positive-mass oscillator, resulting in an inverted energy
spectrum, where an increased oscillation amplitude low-
ers the total energy. When a negative-mass oscillator is
coherently coupled to a positive-mass oscillator at nearly
the same frequency, the two-oscillator system can un-
dergo an instability, where the transfer of energy between
them leads to unbounded growth of the amplitudes of
both oscillators. This negative-mass instability has been
observed in the classical mechanics of trapped plasmas
[7] and ion traps [8], and has been suggested to play a
role in galactic structure [9].

Negative-mass oscillators also play an important role in
quantum science. Glauber proposed that a negative-mass
oscillator coupled to a zero-temperature bath would,
through the negative-mass instability, function as an
ideal quantum amplifier [10]. Joint measurement of reso-
nant, but uncoupled, positive- and negative-mass oscilla-
tors allows for continuous measurement in a back-action-
free subspace [11, 12], recently demonstrated [13, 14] as
a method to circumvent standard quantum limits for po-
sition and force detection. Weak coupling of such modes,
below the instability threshold, has been proposed for
generation of steady-state, two-mode entanglement [15].

In this Letter, we report experimental realization of
the negative-mass instability in a fully quantum, opto-
dynamical system. Following Glauber [10] and recent
experiments [14, 16, 17], the collective spin of an atomic
gas with magnetic moments polarized opposite an ap-
plied magnetic field can be approximated as a negative-
mass oscillator. The positive-mass oscillator is provided
by the center-of-mass motion of the same trapped atomic
gas, cooled initially near its ground state. A single-mode
optical cavity introduces a third quantum element, which
couples to each oscillator through magneto-optical and

optomechanical interactions, respectively. This cavity
field both mediates interactions between the two oscil-
lators, leading to a collective spin-orbit coupling within
the atomic gas, and facilitates continuous measurement
of the hybrid system, with precision near the standard
quantum limits [18]. We observe amplification of both
oscillators by the negative-mass instability, which, sim-
ilar to a non-degenerate parametric amplifier, induces
strongly correlated excitations in both modes. We esti-
mate the covariance of the resulting two-mode state from
measurements of its transient decay during subsequent
free evolution. The observed gain and correlation am-
plitude are described well by a linearized model of the
hybrid optodynamical system.

To illustrate the negative-mass instability, consider a
system of two harmonic oscillators, described by unitless
bosonic operators â and b̂, evolving at frequencies ωm =
ω0 + δ/2 and ωs = ω0 − δ/2, and let ε represent the sign
of the second oscillator’s mass. If coupled by a spring of
strength Ω, the resulting dynamics are described by the
interaction-picture Hamiltonian

HI =
~Ω

2

(
â†b̂ ei(ωm−εωs)t + â†b̂†ei(ωm+εωs)t + h.c.

)
. (1)

For nearly resonant oscillators, under the rotating-wave
approximation, this interaction hybridizes their dynam-
ics into coupled normal modes with eigenfrequencies
ω± = ω0 ±

√
δ2 + εΩ2/2. For positive masses (ε = +1),

the interaction results in a familiar avoided crossing in
the energy spectrum and facilitates resonant exchange
of excitations [Fig. 1a], conserving the total excitation
number.

However, when the mass of the second oscillator is neg-
ative (ε = −1), the pair-creation and pair-annihilation
terms of the interaction are resonant [Fig. 1b], driving
amplification of both oscillators. For strong coupling
(|Ω| > |δ|), the normal-mode eigenvalues become com-
plex, indicating the onset of the negative-mass instability.
In this condition, the oscillation frequencies of the nor-
mal modes, described by Re[ω±], synchronize, while the
instability gain, described by G± = 2 Im[ω±], indicates
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FIG. 1. (a-b) Energy levels of two nearly degenerate harmonic
oscillators. (a) For positive-mass oscillators, coupling medi-
ates exchange of excitations, conserving the total excitation
number. (b) For positive- and negative-mass oscillators, the
interaction resonantly drives pair creation, resulting in expo-
nential growth of a correlated mode. (c) The center-of-mass
motion of a harmonically confined, ultracold atomic ensemble
(green), with trap frequency ωm, represents the positive-mass
oscillator. Larmor precession at frequency ωs of the collec-
tive atomic spin near its highest-energy state, in an applied
magnetic field B ∝ x, approximates a negative-mass oscil-
lator. Position- and spin-dependent dispersive coupling to
a circularly-polarized mode of the optical cavity (red) medi-
ates coherent interaction between the oscillators and facili-
tates continuous measurement of their dynamics.

exponential amplification of one mode and damping of
the other [19]. For resonant coupling (δ = 0), the ampli-
fied normal mode describes correlated motion of the two
oscillators with a relative phase of π/2. The resulting dy-
namics are similar to two-mode parametric amplification
observed in driven optical four-wave mixing and down-
conversion [20], which gives rise to the same equations of
motion in a rotating frame defined by the optical pump
[21].

We experimentally realize the negative-mass instabil-
ity using a gas of about 3000 87Rb atoms, cooled to about
3 µK by rf evaporation, and trapped in a single antin-
ode of a standing-wave optical dipole trap (wavelength
842 nm), resonant with a TEM00 mode of a high-finesse,
Fabry-Pérot optical cavity [22]. For small displacements,
the axial atomic motion is approximately harmonic, with
trap frequency ωm controlled by the dipole trap intensity,
defining a positive-mass, center-of-mass mode with unit-
less displacement Ẑm = â+ â† defined in terms of bosonic
phonon operators.

The ensemble is initially spin-polarized in the |f =
2,mf = 2〉 electronic ground-state, yielding a total spin
F ∼ 6000. Applying a magnetic field along x, transverse
to the cavity axis, induces Larmor precession in the y-z
plane at frequency ωs. For small, collective excitations of
the total dimensionless spin F̂ away from the magnetic
field axis, the Larmor precession can be approximated
as the motion of a harmonic oscillator, with unitless dis-

placement defined as Ẑs =
√
F/2 F̂z = b̂+ b̂† in terms of

bosonic operators [23]. The effective mass of this oscil-
lator is negative (positive) for a spin precessing near its
highest-energy (lowest-energy) state [17].

The atomic ensemble is probed through its influence on
another TEM00 cavity mode, with half-linewidth κ/2π =
1.82 MHz, which is detuned by ∆ca/2π = −42 GHz
from the atomic D2 transition, realizing an intensity- and
spin-dependent dispersive coupling to circularly polar-
ized light. Positioning the trapped ensemble at the max-
imum intensity gradient of the probe field [Fig. 1c], its
axial motion modulates the dispersive interaction, pro-
viding linear coupling to the center-of-mass displacement
Ẑm. Optical coupling to the collective spin arises from
the circular birefringence of the atomic ensemble [24].
For a cavity driven with circularly polarized light, this
birefringence causes the dispersive coupling strength to
depend linearly on F̂z, the projection of the total spin
along the cavity axis, such that the cavity mode is cou-
pled to one oscillating component of the transverse spin
[25].

Linearizing the collective dynamics for small excita-
tions around an average cavity photon number n̄, in a
frame rotating at the optical probe frequency ωp, results
in an effective Hamiltonian [26]

H = ~ωmâ
†â+ ε~ωsb̂

†b̂− ~∆pcĉ
†ĉ

+ ~
√
n̄(ĉ+ ĉ†)

[
gmẐm + gsẐs

]
+ ~n̄gsmẐmẐs, (2)

where ∆pc = ωp − ωc is the probe detuning from cavity
resonance, ĉ is the annihilation operator for photons in
the cavity mode, and ε = − sgn〈F̂x〉 is the sign of the
spin oscillator’s effective mass. The coupling rates de-
fined here are gs/2π = −18 kHz, gm/2π = 26 kHz, and
gsm/2π = 120 Hz for our system.

The coherent interactions between the three modes de-
scribed by this Hamiltonian are more complicated than
the model introduced in Eq. 1. However, the two-
mode model can be recovered by adiabatic elimination
of the cavity mode, in the unresolved sideband regime
(κ � ωm, ωs). This results in optodynamical coupling
between the collective motion and spin, with strength
Ωopt = 4gsgmn̄∆pc/(κ

2 + ∆2
pc) [28], in addition to in-

dependent optodynamical frequency shifts [29, 30] and
damping [31–33] of each oscillator.

The final term of Eq. 2 describes an additional, di-
rect interaction between the motion and spin, which de-
pends only on the mean photon number n̄. This ‘static’
interaction arises from the spatial variation of the vec-
tor Stark shift and couples the motion and spin of each
atom. Eq. 2 captures the projection of this interaction
onto the collective modes, which, combined with the op-
todynamical coupling, results in a net spring strength
Ω = Ωopt + 2n̄gsm. In addition, there are residual inco-
herent dynamics, due to weak coupling between the spin
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FIG. 2. Observation of negative-mass instability. (a) Spectro-
gram of total optical modulation observed during the experi-
mental sequence, averaged over 200 iterations. The spectrum
shows components at the Larmor frequency, fixed at ωs = 120
kHz (dashed line), and the mechanical frequency, initially at
ωm = 95 kHz then varied during coupling to achieve the de-
sired detuning (solid line). The collective spin shows negligi-
ble decay and the motion damps at rate Γm/2π = 2 kHz. (b)
Optodynamical coupling strength Ωopt, calculated from the
measured ∆pc and n̄. Experiments are performed with a cou-
pling pulse with average n̄ = 15 and ∆pc = 1.4 MHz (blue)
and without coupling (red). (c) The mean squared joint dis-
placement of both oscillators, captured in the cycle-averaged
optical modulation power between 85 kHz and 150 kHz. This
signal reflects exponential amplification of both oscillators
while coupled, followed by a stationary beat during the sub-
sequent free evolution, revealing the transient decay of cor-
relations created between the two modes. Transients from
changes in the optical probe and trap intensity perturb mea-
surements near t = 0 and t = tc (light points), which are
excluded from analysis.

and the thermal motion of each atom in the center-of-
mass frame, which mediate a resonant, incoherent trans-
fer of energy from the initially polarized spin into the me-
chanical bath, resulting in loss of spin polarization and
anomalous diffusion of its precession [26].

Owing to the spin- and position-dependent dispersive
coupling in Eq. 2, the probe field is sensitive to the joint
displacement operator D̂ = gmẐm + gsẐs, imparting a
state-dependent frequency shift to the effective cavity
resonance. Through this shift, the oscillator dynamics
are imprinted on phase and amplitude modulation of
light transmitted through the cavity. These modulations
are observed using an optical heterodyne detector, with
total cavity photon detection efficiency ε = 9%, from
which a measurement record of D̂ is recovered.

We observe the negative-mass instability by applying a

short optical coupling pulse to initially uncorrelated oscil-
lators and measuring the subsequent free ringdown of the
resulting state [Fig. 2]. During the initial preparation,
the oscillator frequencies are well resolved to suppress
interactions while the probe is stabilized on cavity reso-
nance (∆pc = 0) at a minimal intensity (n̄ ≈ 1 [34]). In
the final stage of preparation, the mechanical frequency
ωm is adiabatically ramped in 10 µs to achieve the de-
sired detuning from the Larmor frequency δ = ωm − ωs

[Fig. 2a]. The optical interaction is then quickly turned
on for coupling time tc by increasing the probe intensity
and stepping its detuning ∆pc to achieve the desired cou-
pling strength [Fig. 2b]. To observe the transient decay
of the correlated two-mode state after the coupling pulse,
the probe intensity is reduced (n̄ ≈ 4), for improved mea-
surement sensitivity, and the oscillator frequencies are re-
solved, by adiabatically ramping the optical trap back to
its initial depth in 10 µs.

The coupled system evolves according to the projec-
tion of the oscillator’s initial states onto the hybrid nor-
mal modes, where, under strong coupling, one mode is
amplified and the other is damped. Because both oscilla-
tors start near their ground states, without well-defined
phases, the absolute phase of the amplified mode is ran-
dom. Therefore, each oscillator, observed independently,
is driven into an effective thermal state with increased
mean occupation, and the observed joint displacement
〈D̂〉 averages to zero. However, the growth of correlation
between the oscillators results in motion with a fixed rel-
ative phase.

Both the amplification and correlation generated by
the negative-mass instability are clearly captured in the
cycle-averaged mean squared joint displacement

〈D̂2〉cyc = g2m〈2â†â+ 1〉+ g2s 〈2b̂†b̂+ 1〉+ 4gmgs〈Re[â b̂]〉.

Time evolution of this signal reveals the exponential
growth of both oscillators during coupling, in addition
to a stationary beat due to interference of the resulting
two-mode correlations during subsequent free evolution
[Fig. 2c]. This beat represents a self-heterodyne mea-
surement arising from the product of the oscillator am-
plitudes, which evolves at their frequency difference, with
initial amplitude and phase reflecting the magnitude and
phase of correlation in the final state.

The instability gain is measured in two ways—from
growth of 〈D̂2〉cyc observed during coupling and from es-
timates of the resulting two-mode state after variable tc.
Under strong coupling, both normal modes evolve at ap-
proximately the same frequency, such that 〈D̂2〉cyc pre-
dominately displays exponential growth at rateG+, while
incoherent dynamics driven by the thermal mechanical
bath add diffusive growth to the observed signal. For
sufficiently strong optical coupling Ω, near the optimal
probe detuning |∆pc| = κ, the coherent interaction is
dominant, resulting in the onset of instability observed
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FIG. 3. (a) Onset of instability, observed in the mean squared
displacement, for increasing optical coupling strength, with
n̄ = 10 and oscillator detuning δ/2π = 14 kHz. Each trace
(offset for clarity) is the average of around 30 repetitions.
Growth saturates due to the finite cavity linewidth (scale bar)
and other non-linearities. (b) Resonance of instability for var-
ied δ, under strongest optical coupling in (a). The instabil-
ity gain G+ is extracted by least-square fits (lines) to data
at early times. (c) G+ (red diamonds) versus δ, compared
to predicted steady-state gain (solid line). The peak insta-
bility occurs at finite detuning, due to optodynamical shifts
of each oscillator’s frequency. The larger frequency shift ob-
served might be due to asymmetric transients, not reflected in
the theoretical steady-state gain. (d) For an inverted probe
detuning (∆pc = +2.0 MHz), the optodynamical coupling
acts opposite the static coupling, resulting in reduced peak
gain (blue diamonds). Error bars in (c-d) represent combined
1-σ statistical uncertainty from the fit and systematic error
estimated from ±10% variations of the fit interval.

in exponential growth of 〈D̂2〉cyc [Fig. 3a]. The insta-
bility quickly drives the system into saturation, but for
early times, the coherent growth is clearly reflected in the
curvature of the measured signal.

We explore the instability’s resonance by repeating
these measurements over a range of δ [Fig. 3b]. The
instability gain is extracted from the signal by a least-
squares fit to a model describing coherent exponential
amplification with additional diffusive noise, using inde-
pendent rates to distinguish the coherent and incoherent
dynamics [26]. The peak instability occurs at a non-zero
detuning [Fig. 3c], because independent optodynamical
frequency shifts act on each oscillator in opposite direc-
tions, shifting them into resonance. Inverting the sign of
optical coupling Ωopt, with an equal but opposite ∆pc,
reveals the effect of the static coupling as an asymmetry
in the observed gain [Fig. 3d].

FIG. 4. Results of matched-filter analysis. (a) Growth of the
mechanical (red downward triangle), spin (blue upward trian-
gle), and correlated (yellow squares) occupation as a function
of tc, with δ/2π = 14 kHz and the same optical coupling
as Fig. 3c. The observed correlated occupation agrees well
with the predicted evolution of the measured initial state at
the optimal detuning (yellow line). Growth saturates near
a mechanical occupation of 100, possibly due to mechanical
non-linearity of the dipole trap. (b) Correlated occupation
and phase versus δ, after fixed tc = 60 µs. Error bars in (a-b)
indicate combined 1-σ statistical uncertainty after 200 repeti-
tions and estimated systematic error from the uncertainties of
all filter parameters. The anomalous frequency shift is similar
to that seen in Fig. 3c-d. (c) Example agreement between the

beat observed in 〈D̂2〉cyc (blue points) and a simulated signal
constructed from time-evolution of the estimated two-mode
state (black line). Shaded regions show 1-σ bounds for evolu-
tion of a maximally-correlated state with the same estimated
individual oscillator occupations. Similar measurements per-
formed without coupling (red points) show evolution of the
initial state.

The mean squared displacement, however, lacks spec-
tral information distinguishing the occupation of each
oscillator. To estimate the final two-mode state v̂ =
(â† b̂)T from each experimental iteration, we apply lin-
ear matched filters directly to the free ringdown observed
after the coupling pulse, extracting single-shot estimates
for the amplitude and phase of each oscillator [28, 35].
From an ensemble of measurements, we estimate the
second-moment matrix C = 〈v̂v̂†〉, correcting for cor-
related contributions from thermal noise, measurement
backaction, and detector shot-noise during the measure-
ment interval [26].

The diagonal components of the Hermitian matrix C
capture the exponential growth of each oscillator’s oc-
cupation for increasing tc. The off-diagonal component
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describes the amplitude and phase of correlation in the
resulting state, which demonstrates the strong correla-
tion of excitations added to both oscillators, providing
an independent measure of G+ unperturbed by the in-
coherent dynamics [Fig. 4a]. This amplitude and phase
is measured across a range of δ, for a fixed tc = 60 µs,
revealing the resonance of the correlation growth, with
the expected correlation phase φ = −π/2 at the opti-
mal detuning [Fig. 4b]. We verify these matched-filter
results by reconstructing the mean squared displacement
from time evolution of the estimated covariance matrix
C [Fig. 4c].

In conclusion, we have demonstrated cavity-mediated
coupling of the collective spin and motion of a trapped
atomic ensemble. For a high-energy polarized spin, this
interaction results in a negative-mass instability, with
dynamics analogous to a self-driven parametric ampli-
fier. We observed coherent amplification of a correlated
mode by the instability, using time-resolved matched-
filter analysis to estimate the covariance of the two-mode
correlated state. This instability could be applied as a co-
herent amplifier of an optomechanical state, facilitating
enhanced measurement sensitivity, or to generate two-
mode squeezed states, for use in entanglement enhanced
metrology. While, in our present system, any potential
squeezing is obscured by incoherent coupling to thermal
motion, this limitation could be avoided by using sep-
arate spin and mechanical oscillators, coupled only by
cavity optodynamics.
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