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Abstract

It has recently been shown that the minimum energy solution of the control problem for a linear

system produces a control trajectory that is nonlocal. An issue then arises when the dynamics

represents a linearization of the underlying nonlinear dynamics of the system where the linearization

is only valid in a local region of the state space. Here we provide a solution to the problem of

optimally controlling a linearized system by deriving a time-varying set that represents all possible

control trajectories parameterized by time and energy. As long as the control action terminus is

defined within this set, the control trajectory is guaranteed to be local. If the desired terminus of

the control action is far from the initial state, a series of local control actions can be performed in

series, re-linearizing the dynamics at each new position.
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Recent work investigates control strategies for complex networks governed by nonlinear

dynamical equations. [1–5]. Such problems occur in opinion dynamics in a population [6],

consensus in robotic networks [7], developing gene therapies [8], avoiding cascade failures in

power grids [9], and many others [2, 10–13].

Recently [14], it was shown that the minimum energy state trajectory of linear systems

is nonlocal and so one should not attempt to apply minimum energy control to linearized

systems. We instead focus on determining the region of state space where the trajectory does

remain local and so minimum energy control can still be applied to linearized approximations

of nonlinear systems. We apply our results to develop an algorithm that determines a

piecewise open-loop control signal for nonlinear systems.

The control of complex networks goverened by nonlinear dynamical equations is still in

its infancy [1]. We attempt to bridge the gap between the well developed techniques for

controlling complex networks governed by linear dynamics and those networks which are

goverened by nonlinear dynamics. A recent paper [15] suggested that by perturbing the

initial state of the system one may be able to place the perturbed initial state in the basin of

attraction of a desirable attractor. A similar method proposed [16, 17] applies perturbations

to the system parameters rather than to the states like in the previous method. If the

dynamical equations are diffusive [18–20], then by over-riding the dynamics of the nodes in

a feedback vertex set, one can drive the remaining nodes to an attractor. State and parameter

perturbations represent heuristic methods that attempt to alter either an initial condition

or the dynamical equations themselves to move the state into a desirable attractor’s basin

of attraction.

This letter describes two main results. The first result is a derivation of a time-varying

ellipsoid where all minimum energy state trajectories remain local. The second result applies

the time-varying ellipsoid equation to develop a piecewise controller that drives a nonlinear

dynamical network’s states towards the basin of attraction of a desired attractor.

It was recently shown [14] that choosing arbitrary initial and final conditions of the

minimum energy optimal control problem leads to a non-local state trajectory. Specifically,

this means that the length of the state trajectory is independent of the distance between

initial and final conditions in average. Our first result determines the particular set of final

conditions that guarantee the locality of the minimum energy controlled state trajectory

of a linear dynamical system. The minimum energy control signal is found by solving the
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optimal control problem,

min
u(t)

1

2

∫ tf

t0

uT (t)u(t)dt

s.t. ẋ(t) = Ax(t) + f +Bu(t)

x(t0) = x0, x(tf ) = xf

(1)

After computing the Hamiltonian and solving the resulting system of ODEs (see SI section

1), the minimum energy control signal is found to be u(t) = BT eA
T (tf−t)W−1(tf )(xf − gf )

where W (t) = eA(t−τ)BBT eA
T (t−τ)dτ is the controllability Gramian and g(t) = eA(t−t0)x0 +∫ t

t0
eA(t−τ)dτ f is the zero-input state trajectory. The energy (or effort) consumed by the

control signal, E(t), is a monotonically increasing, positive definite function defined as the

cumulative sum of squares of each individual signal,

E(t) =

∫ t

t0

uT (t)u(t) = (x(t)− g(t))T W−1(t) (x(t)− g(t)) (2)

The energy consumed can be expressed as an equation of an n-dimensional hyper-ellipsoid

centered at g(t) and with principal axes in the eigen-directions of W (t), each with width

equal to 2
√
E(t)

√
di(t) where di(t) is the corresponding eigenvalue of W (t). The hyper-

ellipsoid, defined as S(t) =
{
x(t)| (x(t)− g(t))T W−1(t) (x(t)− g(t)) = E(t)

}
represents the

set of states reachable with E(t). Note that the set of states corresponding to a particular

value E(t1) is independent of the function form E(t), t ∈ [t0, t1) for all previous time. By

restricting the amount of energy available, E(tf ), we can determine a set of final conditions,

S(tf ) such that the state trajectory remains local, that is, the state at time t lies on the

hyper-ellipsoid S(t).

To further understand the structure and evolution of the hyper-ellipsoid S(t), in Fig. 1

we consider a linear system consisting of two states, ẋ1 = x2 + u and ẋ2 = −x1 with initial

conditions x1(0) = 1 and x2(0) = 1. In Fig. 1(a), the energy E(t) = 1 is held constant

while the time t is allowed to grow. We see the centroid of the ellipsoid S(t) moves with the

zero-input state trajectory while the axes grow and rotate. Note that for short tf , the larger

axis is primarily in the direction of the state of the node that receives the control input,

x1. On the other hand, in Fig. 1, holding t constant and increasing E(t) does not vary the

centroid of the hyper-ellipsoid or the relative axis widths, but only scales the ellipsoid.

We have shown how the hyper-ellipsoid S(tf ) can be designed by choosing tf and E(tf ),

which in turn allows us to choose a final condition x(tf ) ∈ S(tf ) to ensure a local minimum
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FIG. 1. Visualizing the ellipsoid by varying tf and E. The dynamics are linear, two dimensional

with equations ẋ1 = x2 +u and ẋ2 = −x1. The arrows represent the flow of the zero-input system.

In panel (a), the final time is increased from 0.5 to 3.0 while E, the energy, is held constant. Note

how the center of the ellipsoid moves with the zero-input trajectory, i.e., it follows the flow. Also,

as the final time increases, the direction and width of axes change. In panel (b), the final time is

held constant while E, the energy, is increased. The center of the ellipsoid and the directions of

the axes remain fixed as E increases and the only aspect that is altered is the width of the axes.

state trajectory. We will now show how this result can be applied when developing a

piecewise controller for a large class of nonlinear dynamical systems.

We focus on affine systems of nonlinear differential equations. The differential equation

that describes the behavior of a single node is,

ẋi(t) = Fi(x(t)) +
M∑
k=1

bikuk(t) (3)
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where i = 1, . . . , N and all functions, Fi : RN → R are assumed to be smooth. The sum∑M
k=1 bik = 1 if node i is a driver node and

∑M
k=1 bik = 0 if node i is not a driver node. To

reflect the network nature of our problem, the values bik, i = 1, . . . , N , k = 1, . . . ,M are

either 0 or 1 where if bik = 1 then node i receives input k and if bik = 0, then node i does not

receive input k, and each input is received by only one node. Equation (3) can be rewritten

in vector form, ẋ(t) = F(x(t)) +Bu(t) where x(t) is the N -vector of states for the nodes of

the network, B is the N ×M matrix with elements bik and u(t) is the M -vector of control

inputs.

First, we will examine the local problem before demonstrating how a series of local

problems can be constructed to develop a piecewise control strategy to drive the network’s

states into the basin of attraction of a desired attractor. The dynamics of a nonlinear

system can be approximated locally about a non-equilibrium point xp by a first order Taylor

expansion,

ẋ(t) = fp + Apx(t) +Bu(t) +H.O.T. (4)

where Ap = ∂f
∂x

∣∣
x=xp

is the Jacobian of the nonlinear dynamics evaluated at xp and fp =

f(xp)−Apxp represents the flow at xp. The higher order terms are collected in H.O.T.. This

linearization is a valid representation of the nonlinear dynamics only in a local region of

state space centered at xp. We qualify the region where the linearization in Eq. (4) is valid

as the compact, but not necessarily convex, set,

Np =
{
x ∈ RN | ||f(x)− fp − Apx||2 ≤ ε

}
(5)

where ε > 0 is a ‘small’ positive scalar that represents the desired quality of the linearized

region, that is, what is the largest deviation between the nonlinear and linear dynamics we

may allow. It is important to make explicit that the linearization is also temporal. As a

trivial example, assume u(t) ≡ 0 and set x(0) = xp. The linearized dynamical equations at

this point, ẋ(t) = f(xp) 6= 0 so at some time t > 0, x(t) /∈ Np. Note that the resulting linear

system in Eq. (4) appears in the optimal control problem in Eq. (1).

We have now defined how one can compute a local minimum energy control signal of the

linearized model of the true nonlinear system of differential equations such that the state

remains within the valid linearization region in Eq. (5) at all times t ∈ [t0, tf ]. We

now reframe the above local problem in terms of a global problem. Let the initial state of

the system be denoted x(0) = x0 and some desired region of state space X ∈ RN which we
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want to reach in finite time. A typical example defines X as a conservative approximation

of the basin of attraction of a desirable attractor of f(x(t)). After computing the linearized

dynamics at x0, that is f0 and A0, one may choose a time t1 and a point x1 ∈ S0(t1) ∈ N0 so

that the control trajectory is entirely inside the valid linearization neighborhood, Eq. (5),

using the methods described above (and elaborated upon in the SI). We can then re-linearize

the system about x1, that is compute f1 and A1, set the initial time to be t1 and initial state

x1, and choose a final time t2 and point x2 ∈ S1(t2) ∈ N1. This process may be repeated

until xP (tP ) ∈ X at iteration P . The returned solution is a series of times tp and points xp,

p = 0, 1, . . . , P .

Two important caveats must be stated with respect to the previous iterative approach.

The first is that there is no guarantee that a series of points tp and xp such that xp ∈

Sp−1(tp) ∈ Np−1, p = 1, . . . , P and xP ∈ X exists. The method presented above is only

a guarantee that a minimum energy control trajectory remains local if the terminal point

is chosen in the ellipsoid S(tf ) that is completely contained in the neighborhood N . The

second caveat is that the choice of each point, xp, may or may not allow for achieving the

desired final condition. The decision mechanism to choose each next point xp+1 we have used

in practice collects Q feasible choices, x
(k)
p+1, t

(k)
p+1, with their respective energy requirement,

E(k), k = 1, . . . , Q, and assigns a fitness to each one,

F (k) = kEE
(k) +

N∑
i=1

wi

(
(x

(k)
p+1)i − (xf )i

)
, (6)

where kE is a positive weight applied to the required energy for the choice and wi, i =

1, . . . , n, is a weight applied to the remaining change required for each node’s state. The

next point of the iterative process, xp+1 = x
(k)
p+1, is chosen such that k = argminkF

(k).

To demonstrate an implementation of LOCS, we first consider a two-dimensional sys-

tem to enhance the visualization. Further details of the implementation are described in

the Supplementary Information. The two-dimensional nonlinear system is governed by non-

linear differential equations ẋ1 = (x1 − 3)(x2 − 2) and ẋ2 = x2(x1 − 1)(x2 − 1) + u. The

global control action tries to move the system from a periodic orbit about the fixed point at

(1,2) to a positively invariant set around the stable fixed point at (3,0). In order to verify

the solution at each step, the minimum energy control input is applied to the nonlinear

dynamical equations using a Runge-Kutta (RK) solver to simulate the dynamics. The state

at the end of each step returned by the RK solver, x(tp), is used as the subsequent initial
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FIG. 2. A two-dimensional example, with exact knowledge of the system and with imperfect

knowledge of the system. (a) State trajectory when the system is known exactly The fitness

function is set to F = 4E + 0.8|x1 − xf,1|+ 0.2|x2 − xf,2|. To compare, the solution returned from

GPOPS is also shown which, as can be seen, is similar to the routine returned from LOCS. Note

that this is a result of choosing the fitness function carefully based on the dynamics of the system.

(b) State trajectory when the system is not known exactly. In this case GPOPS, which gives a

trajectory planning solution, is inadequate (not robust). On the other hand, as LOCS re-evaluates

the linearization at each step, robustness is built into the method and can compensate for the

model uncertainty.

condition for step (p + 1). Using this method, the small imperfections of the linear model

are retained. Figure 2(a) shows the returned state trajectory from the algorithm as a blue

dashed curve. Also included is the minimum energy trajectory returned from GPOPS (red

curve). GPOPS [21] is a well-known direct method to solve optimal control problems by

discretizing the states and inputs in time and solving the resulting nonlinear programming

problem. With knowledge of the dynamics, we choose the fitness function for each possible

point x(tp+1) = xp+1 to be F = 4E + 0.8|x1 − xf1|+ 0.2|x2 − xf2|. At each step, we sample

40 feasible choices for the next step.

Another benefit of the LOCS algorithm is that it is able to correct for the model discrep-

ancies of the linear model. We explore the ability of LOCS to handle larger imperfections be-

yond the linearization error. In Fig. 2b, one of the parameters in our dynamical model which

we use to compute the linearized model is incorrect. More specifically, ẋ1 = (x1−a)(x2−2),

where a = 3 in the model and a = 3.5 in the actual dynamical equations. The LOCS

algorithm is able to adjust for this parameter inconsistency as the system is relinearized
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about each successive point returned by the RK simulation. The re-linearization step builds

in robustness as the linear model is updated from step to step during the LOCS procedure.

For comparison, while GPOPS provides a near optimal, trajectory planning solution, it fails

at producing satisfactory solutions when the model is not known exactly. The comparison

of LOCS and GPOPS with model uncertainty is shown in Fig. 2b with the values of a

discussed previously.

Here and in the supplementary information, We re-examine two examples recently pre-

sented in the literature of the control of complex nonlinear networks. Both examples use

methods referred to as ‘brute-force control’ [17], that is, there is no clear way one may im-

plement the resulting controllers. Using our method, we determine a time-varying control

signal u(t) that performs the same control action for both examples.

A model that describes the regulatory structure of the intracellular circadian clock in

mice was derived as a system of nonlinear differential equations [22]. The system was shown

to have a number of attractors, both periodic orbits and fixed points. This system was used

as a demonstration of the utility of the feedback vertex set method [19]. Rather than over-

riding the state variables, we instead attach a control input to each of the states determined

to be in the feedback vertex set, which we verified ensures the system is structurally control-

lable [23]. With this modification, the complex nonlinear network is in the form required to

use LOCS as defined in Eq. (3). We define the desired control action as moving from one

of the periodic orbits to a stable fixed point. The state trajectories are plotted in Fig. 3a,

where the darker colors correspond to the states before and after the controller is active and

the lighter colors correspond to the state while LOCS is active. The norm of the error as a

function of time is shown in Fig. 3b.

In the supplementary material [24], we include additional derivations and examples in-

cluding an application of the LOCS algorithm to control a network of generators that make-

up a power grid after a local failure recently studied in [25, 26].

In this letter, we presented a methodology to choose a terminal point of a control action

for a linearized system such that the optimal control trajectory remains local. This was

accomplished by defining the energy ellipsoid derived from the expression for the control

input associated with minimum energy control. A longer control action can then be defined

such that the terminus of one control action becomes the initial state of the next, where

the linear dynamics are adjusted by re-linearizing the original nonlinear system about the
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FIG. 3. Applying the LOCS algorithm to a Mammalian Circadian Rhythm system. (a) The state

time-evolution. The darker colors depict the states during which no control signal is applied to

the system. The lighter colors represent the states during which the LOCS controller is active.

Dark blue and light blue curves depict the state evolution of driver nodes while black and magenta

curves depict the state evolution of non-driver nodes. (b) The norm of the error of the states with

respect to the desired fixed point.

new initial condition. Moreover, the algorithm is amenable to a real-time implementation

as computations are carried out locally at each point. For large dimensional systems, such

as the dynamical networks we consider in our examples, the LOCS approach provides an

open-loop controller that only requires discrete measurements of the states, rather than a

continuous feedback loop. This daisy chain approach provides the possibility of using linear

optimal control iteratively to traverse larger regions of state space for systems with nonlinear

dynamics.
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