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The “Kill the Winner” hypothesis is an attempt to address the problem of diversity in biology.
It argues that host-specific predators control the population of each prey, preventing a winner
from emerging and thus maintaining the coexistence of all species in the system. We develop a
stochastic model for the “Kill the Winner” paradigm and show that the stable coexistence state
of the deterministic “Kill the Winner” model is destroyed by demographic stochasticity, through a
cascade of extinction events. We formulate an individual-level stochastic model in which predator-
prey coevolution promotes high diversity of the ecosystem by generating a persistent population
flux of species.

The high diversity of coexisting species in most ecosys-
tems has been a major puzzle for more than 50 years. In a
classic paper, Hutchinson articulated the so-called Para-
dox of the Plankton for the case of marine ecosystems
[1, 2]: why do many species of plankton that feed on
the same nutrients coexist, somehow avoiding the phe-
nomenon of competitive exclusion [3], where one species
outcompetes all the others?

The various tentative resolutions of the paradox can be
divided into two classes [4–6]. In the first, the ecosystem
is argued to have failed to reach a fixed point equilib-
rium state in which the competitive exclusion principle
applies, due to temporal or/and spatial factors. For ex-
ample, the time needed for the system to reach equilib-
rium might be much longer than the time over which
the system undergoes significant changes in its boundary
conditions, such as weather [7]. Spatial heterogeneity can
increase the global diversity of the system by maintaining
local patches that each obey the competitive exclusion
principle but globally support the coexistence of multi-
ple species [8, 9] (for another perspective, see [10]). In
the second class of resolutions, interactions such as pre-
dation, in conjunction with competitive exclusion, pro-
mote the coexistence of species through time-dependent
or stochastic steady states [11–13]. One widely cele-
brated example of this behavior, which is seen in both
natural ecosystems as well as some laboratory systems
such as chemostats [14, 15], is the continual succession of
different community members known as “Kill the Win-
ner” (KtW) dynamics [12, 16]. This has been frequently
revisited and expanded in the context of marine systems
[17, 18], and is related to the Janzen-Connell hypothesis
[19, 20] for tree biodiversity.

In the KtW hypothesis [12, 16, 17] there are two groups
of resource consumers, for example bacteria and plank-
ton. The plankton community generally has a lower ef-
ficiency of resource usage than bacteria. They remain in
the system, only because a protozoan consumes the bac-
teria non-selectively and thus limits the bacterial pop-

ulation, leaving room for plankton to thrive. Inside
the bacterial community, different strains have distinct
growth rates. They coexist, with no dominating winners,
due to host-specific viruses controlling the corresponding
strains. This results in two layers of coexistence through
KtW dynamics (bacteria-plankton coexistence and bac-
terial strain coexistence), nested like Russian dolls [17].

The original KtW model [12, 16] was formulated as de-
terministic Lotka-Volterra type equations for the species
biomass concentrations. The high diversity of the system
is exhibited in the steady state where multiple species
coexist with positive biomass; these calculations assume
that the system is spatially homogeneous and that the
number of individuals is large enough so that it is valid
to use a continuous density to describe the population.
However, this is not appropriate when the population is
finite, because large fluctuations are able to drive the
system towards extinction, an outcome that cannot be
captured by a continuous density that is allowed to be-
come arbitrarily small [21, 22]. Requiring the popula-
tion size to be integer-valued leads inexorably to shot
noise, referred to in the ecological context as demographic
stochasticity.

The purpose of this Letter is to explore the effect of
demographic stochasticity on the KtW paradigm and
demonstrate that the stochasticity causes the coexistence
steady state in the deterministic KtW model to break
down through a cascade of extinctions, leading to a loss
of diversity. This cascade can be avoided by allowing the
predators and prey to coevolve by mutation. We propose
a stochastic model of the coevolution and show that it
generically maintains the diversity of the ecosystem, even
in the absence of spatial extension. Our results for KtW
models complement earlier findings that mutation con-
trols the diversity of strategies in more abstract models of
ecosystems, idealized as evolutionary games, such as the
prisoner’s dilemma [23]. Our results strongly suggest that
diversity reflects the dynamical interplay between ecolog-
ical and evolutionary processes, and is driven by how far
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the system is from an equilibrium ecological state (as
could be quantified by deviations from detailed balance).
The surprisingly deep role of demographic stochasticity
uncovered here is consistent with earlier demonstrations
that individual-level minimal models capture a wide va-
riety of ecological phenomena, including large-amplitude
persistent population cycles [24], anomalous phase shifts
due to the emergence of mutant sub-populations [25, 26],
spatial patterns [27, 28] and even reversals of the direc-
tion of selection [29] without requiring overly detailed
modeling of inter-species interactions.

Model:- The key component of the KtW hypothesis is
that, for each resource competitor, there is a correspond-
ing predator that can prevent it from becoming a dom-
inant winner. The Russian doll-like hierarchy is not es-
sentially important for the basic idea. Thus we focus on
only a single layer of KtW interaction, the host-specific
viral infection, and ignore the multilevel structure.

We write down the individual reactions for a simplified
system of m pairs of prey and predators, which we will
take to be bacteria and viruses (phages), as follows:

Xi
bi−→ 2Xi, Xi +Xj

eij−−→ Xj , (1a)

Yi +Xi
pi−→ (βi + 1)Yi, Yi

di−→ ∅. (1b)

All rates are positive. i, j = 1, 2, . . . ,m are strain indices.
Bacterial individuals Xi, have strain-specific growth rate
bi. They compete with each other for an implicit resource
with strength eij . Viruses of the ith strain Yi, infect the
corresponding host Xi with rate pi and burst size βi, and
decay to nothing ∅ with rate di. These reactions form
the minimal generalized KtW model.

Below are the corresponding mean-field rate equations.

Ḃi = biBi −
m∑
j=1

eijBiBj − piBiVi, (2a)

V̇i = βipiBiVi − diVi. (2b)

The dot operator stands for the time derivative. Bi and
Vi represent the densities of the ith bacterial and viral
strains, respectively. The competition matrix eij is some-
times taken as random [30] or, more realistically, as aris-
ing from evolutionary dynamics, such as in a food web
[31]. The KtW model describes situations where diversity
is maintained by predation, with a secondary contribu-
tion from the competition eij . Here, we are interested in
the sensitivity of KtW to stochasticity, and the conclu-
sions are not changed if we set eij to a constant value e
for simplicity.

Eq. (2) has a nonzero steady state as shown below.

B∗
i =

di
βipi

, V ∗
i =

1

pi

bi − e m∑
j=1

B∗
j

 . (3)

We require all B∗
i and V ∗

i to be positive, which limits
the parameters to satisfy bi > e

∑m
j=1 dj/βjpj ,∀i. Linear

stability analysis shows that the steady state Eq. (3) is
exponentially stable, with all eigenvalues of the linear
stability matrix having negative real parts, as long as
the quantity xi ≡ βip

2
iB

∗
i V

∗
i = di(bi − e

∑m
j=1 dj/βjpj)

is distinct for each i. The steady state can be either a
focus or node, depending on whether the eigenvalues have
nonzero imaginary parts or not. The parameters used in
this article result in the steady state being a focus, but
the conclusion also applies to the node case.

In Fig. 1, we show in the first row the time series of
prey and predator densities obtained from a numerical
evolution of Eq. (2) for m = 10 pairs of bacteria and
phages. Species densities are initially perturbed away
from the steady state. As shown in the figure insets,
species densities decay back to the steady state at long
times, confirming the result of the linear stability analy-
sis. The oscillatory behavior at short time scales demon-
strates the steady state to be a focus.

To reveal the effect of demographic noise, we also con-
duct the stochastic simulation of the corresponding indi-
vidual level reactions (1) with the same parameter set,
using the Gillespie algorithm [32]. The resultant species
density time series are shown in the second row of Fig.
1. In contrast to the deterministic behavior of oscilla-
tory decay, species go extinct in a short time. Bacterial
strains become extinct due to random fluctuation; this
consequentially triggers the extinction of the correspond-
ing viral strains, due to a lack of food. The number of
species monotonically decreases in the process, and the
system diversity undergoes a cascade.

The reason that the stable deterministic steady state
of the generalized KtW model cannot be maintained in
the presence of demographic stochasticity lies in the fact
that species populations in the stochastic model are all
finite, and the probability of the population reaching zero
due to random fluctuation is always nonzero.

Ecosystems have evolved many potential mechanisms
to get around the path to extinction, as introduced at the
beginning of the article. Here, we discuss one possibility:
prey and predator coevolve with each other so that fit
mutants are constantly being introduced into the system,
thus preventing the elimination of the species. Specifi-
cally, prey improve their phenotypic traits (e.g. strength-
ening the shell) to escape from predators, and predators
also adjust their corresponding traits (e.g. sharpening
the claws) to catch prey. This coevolutionary arms race
has been well-documented in many systems [33, 34]. Pre-
vious theoretical studies focused on the dynamics of the
traits of prey and predator groups [35–37], and the struc-
ture of the predation network [38], under different coe-
volving modes. Here, we study how coevolution affects
the diversity of the host-specific predation system.

Coevolution model:- We modify the stochastic generalized
KtW model (1) by adding in the following two sets of
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FIG. 1. Population density time series obtained from the
generalized KtW framework, with 10 bacterium-phage pairs.
The left column is for bacteria and the right for viruses. The
first row shows the result from a numerical evolution of the
deterministic generalized KtW equations, with species densi-
ties initially perturbed randomly away from the steady state.
The parameters are b = (0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05,
1.1, 1.15, 1.2), pi ≡ p = 2, βi ≡ β = 10, di ≡ d = 0.5, and
eij ≡ e = 0.1. The insets show the long time behavior which
demonstrates that the steady state is a focus. For readabil-
ity, only the decays of B2 and V2 are shown. The second row
presents a typical simulation result of the stochastic version of
the generalized KtW model, using the same set of parameters.
The system size is C = 1000 and populations are initialized
with the steady state value.

reactions to describe mutations of the prey Xi from strain
i to i± 1, and similarly those of the predator Yi.

Xi
µ1/2−−−→ Xi±1, Yi

µ2/2−−−→ Yi±1. (4)

We assume that the mutation rates are strain indepen-
dent and one individual can mutate into its two neighbor
strains with the same rate, µ1/2 for bacteria or µ2/2 for
viruses. We set the boundary condition to be open, so
that mutations out of the index set {1, 2, . . . ,m} are ig-
nored. We will refer to Eq. (1) and (4) as the coevolving
KtW (CKtW) model.

For sufficiently high mutation rates, the absorbing ex-
tinction state in the generalized KtW model can be
avoided, in the sense that a strain can reemerge as mu-
tants are generated from its neighbor relatives after its
population drops to zero. Therefore, mutation can stim-
ulate a flux of population through different strains and
promote coexistence.

We define the diversity of the system in the CKtW
model using the Shannon entropy, S = −

∑m
i=1 fi ln fi.

Here, fi is the fraction of the ith bacterial (viral) strain

in the entire bacterial (viral) community. The expression
reaches the maximum, when all strains coexist at their
deterministic steady state Eq. (3), and the minimum 0,
when only one strain exists. We score S = −1, if either
the bacterial or viral community goes extinct.

We present population density time series in Fig. 2,
and the dependence of prey diversity on the mutation
rates in Fig. 3. We set µ1 = µ2 ≡ µ for simplifica-
tion. The diversity of the prey community is calculated
at the end of the diversity time series shown in the inset
of Fig. 3(a), after the system has gone through the tran-
sient region. Although in principle, species in a stochas-
tic system will always go extinct at a time exponentially
long depending on the population size [22], this extinc-
tion time scale is not relevant in our simulation, and we
thus focus on the system state in the long steady region
before the destined collapse.

For small enough mutation rate (population time se-
ries not shown), the entire community can become ex-
tinct before mutants can emerge, and the system still
collapses, demonstrated by the diversity time series in
the inset of Fig. 3(a), as in the generalized KtW model.
This corresponds to region I in Fig. 3(a). For interme-
diate mutation rates, most strains stay near extinction,
driven by demographic noise, while some mutants can
grow to be dominant if they happen to confront only
a few predators when first emerging. Subsequently, the
predator population expands, feeding on the dominating
winners, thus reducing the winner population, and allow-
ing the next dominator to grow. In this way, we see that
winner populations spike alternatively in the time series,
as in the first row of Fig. 2. Near the onset of coex-
istence, the diversity has a large deviation and is very
sensitive to the mutation rate, as shown in region II in
Fig. 3(a). The large deviation is also seen in the di-
versity time series in the inset. For large mutation rate,
the coevolution-driven population flow is fast enough to
compensate for the demographic fluctuations. All strains
remain near the steady state, and no one can win over
others, as shown by the population time series in the
second row of Fig. 2. The diversity slowly approaches
the maximum, with small deviations, as demonstrated in
region III in Fig. 3(a). For extremely large mutation
rate (figures not shown), we can not view the mutation
as a perturbation to the ecological population dynamics.
Species populations deviate from the mean-field steady
state Eq. (3). Specifically, under the boundary condition
in our model, in which the mutation out of the species
space {1, 2, . . . ,m} are effectively individual death, the
population leaks through the boundary and eventually
reaches zeros at extremely large mutation rates. Accord-
ing to the above discussion, we show three phases of dy-
namics, as illustrated in Fig. 3(b), the extinction phase
at low mutation rate, the winner-alternating phase at in-
termediate mutation rate, and the coexisting phase at
high mutation rate.
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FIG. 2. Population density time series in the stochastic coe-
volving KtW model. The left column is for bacteria and the
right for viruses. The system size is C = 1000, and the mu-
tation rates are set to be equal, µ1 = µ2 ≡ µ. Other rates
are the same as those in Fig. 1. The upper and lower rows
show the cases of low and high mutation rates, µ = 0.015 and
µ = 1, respectively.

Open system model:- So far, we have pre-assigned a fixed
number of predator-prey pairs in the system. A more
realistic approach is to let the system be open and evolve
by itself to establish however many species there can be.

As mutants take on new traits, the population spreads
in the trait space. This expansion usually is associated
with a trade-off in the fitness [35]: the further the trait is
from the origin, the lower the growth rate becomes. We
model this trade-off effect, assuming a 1-D trait space, by
setting up M species and assigning the highest birth rate
to the species with index M/2, and decreasing the birth
rate as the species index goes from M/2 to 1 and and
from M/2 to M . The species with index M/2 is at the
center of the trait space and then is the origin of the trait
expansion. Species 1 and M have the lowest birth rates
that are almost 0, and further mutation of the two will
result in mutants with negative birth rates, which can
not grow and are thus excluded from the model. The
species space {1, 2, . . . ,M} contains all possible species
that can potentially exist in the system. However, un-
der conditions of resource limitation, formulated by the
competition strength e, only a few with relatively high
growth rates, out of M , can eventually be established in
the system. The number of species that manage to thrive
corresponds to m in the previous models.

See the Supplemental Material for the stochastic simu-
lation parameters, and the resultant population time se-
ries and diversity dependence on the mutation rate. Even
though the number of established pairs varies with time
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FIG. 3. (a) The main figure shows the prey diversity S, de-
fined in the main text, as a function of the mutation rate
µ1 = µ2 ≡ µ. For each value of µ, we conduct 100 replicates
and calculate the diversity values at the end of the simula-
tions, represented by the gray dots with the blue one being
their mean. The inset shows diversity time series at mutation
rates from the three regions, with µ = 0, 0.015, and 1, respec-
tively. For this particular set of parameters, the mean-field
generalized KtW equations give equal bacterial strain con-
centration at the steady state, and the maximum diversity
in the corresponding CKtW model is lnm. (b) A descriptive
phase diagram of the dynamics, with the mutation rate as the
tuning parameter.

and the population leaks out of the region deterministi-
cally allowed by the carrying capacity, the system still
exhibits three phases depending on the mutation rate,
similar to the CKtW model with fixed number of species.

Discussion:- In contrast to the model in Ref. [18], where
killing winners is exerted externally, we focus on the in-
trinsically established KtW of the system. In the inter-
mediate and fast mutation regions of the CKtW model,
the ecological and evolutionary dynamics are coupled to
each other and occur on the same time scale. This type
of coupling can most easily be observed in microbial sys-
tems, in which organisms have a high mutation frequency
[26, 39, 40]. Recent work has shown clearly the existence
of genomic islands, where genomes of different strains
vary in loci thought to be associated with phage resis-
tance [41]. Both host-specific predation and mutation
are important in generating the observed diversity of the
bacterial genome. The minimal CKtW model can in prin-
ciple describe the diversity in the above system. For ex-
ample, by controlling the mutation rate through an in-
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ducible promoter, using molecular techniques pioneered
in Ref. [42], we envisage a fast bacterium-phage coevo-
lution experiment to test the predicted phase diagram.

In addition to inevitable simplification of biological de-
tails, both the generalized KtW and the coevolving KtW
models assume that the system is well mixed, ignoring
any spatial dispersion. Consequently, they can not cap-
ture the reservoir effect [43] present in an ecosystem,
which means that for any local community, organisms
in its surrounding environment can move into it, keeping
it supplied and refreshed. Specifically, even if a species
goes extinct in a local community, it can be reseeded
there by the surrounding reservoir. Well-mixed models
should be thought of as describing not the entire system,
but a much smaller correlation volume, in which local
demographic stochasticity can be significant [27, 44].
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B. Rodriguez-Brito, L. Pašić, T. F. Thingstad, F. Ro-
hwer, and A. Mira, Nature Reviews Microbiology 7, 828
(2009).

[42] N. H. Kim, G. Lee, N. A. Sherer, K. M. Martini, N. Gold-
enfeld, and T. E. Kuhlman, Proceedings of the National
Academy of Sciences 113, 7278 (2016).

[43] A. Shmida and S. Ellner, Plant Ecology 58, 29 (1984).
[44] T. Butler and N. Goldenfeld, Physical Review E 84,

011112 (2011).


