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Although the elastic modulus of a Gaussian chain network is thought to be successfully described
by classical theories of rubber elasticity, such as the affine and phantom models, verification exper-
iments are largely lacking owing to difficulties in precisely controlling of the network structure. We
prepared well-defined model polymer networks experimentally, and measured the elastic modulus G
for a broad range of polymer concentrations and connectivity probabilities, p. In our experiment,
we observed two features that were distinct from those predicted by classical theories. First, we
observed the critical behavior G ∼ |p− pc|

1.95 near the sol-gel transition. This scaling law is differ-
ent from the prediction of classical theories, but can be explained by analogy between the electric
conductivity of resistor networks and the elasticity of polymer networks. Here, pc is the sol-gel
transition point. Furthermore, we found that the experimental G − p relations in the region above
C∗ did not follow the affine or phantom theories. Instead, all the G/G0 − p curves fell onto a single
master curve when G was normalized by the elastic modulus at p = 1, G0. We show that the
effective medium approximation for Gaussian chain networks explains this master curve.

PACS numbers: XXX

Understanding the elasticity of polymer networks, such
as rubbers and gels, is crucially important for materials
science and biophysics. The elastic modulus, which is
one of the most basic properties of rubber elasticity, has
been studied for several decades and is thought to be suc-
cessfully described by the classical theories such as the
affine model and the phantom model [1–3]. However, out-
standing problems are clearly observed when the classical
theories are applied to networks with topological defects
or gelation processes.

The first problem is that the classical theories of rubber
elasticity fail in describing the critical behavior near the
sol-gel transition, as pointed out by de Gennes [4, 5]. The
elastic modulus G near the critical region is expected
to follow a power law: G ∼ |p − pc|

f . Here, p and pc
are the fraction of bonds that connect neighbor sites,
and the percolation threshold, respectively. The classical
theories predict f = 3 [3, 4], whereas de Gennes and
Daoud predict f = 1.9 and 2.6, respectively [5, 6]. The
validity of these predictions is still unclear [7] because
experimental values of f are very scattered, ranging from
2 to 4 [8–17]. One reason for these scattered experimental
values is that the connectivity probability, p, is difficult
to quantify experimentally. Therefore, instead of |p−pc|,
parameters such as time, |t−tc|, or temperature, |T−Tc|,
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during the gelation process have been used. Here, tc
and Tc are defined as time and temperature, respectively
at the critical point. Though these approximations for
|p − pc| should be valid very near the critical point, the
validity in the range in which previous experiments were
conducted is unclear.
The second problem can be seen in the absolute value

of G far from the critical region. In this region, the elastic
modulus is thought to be described by the affine, phan-
tom or junction-affine models [1–3, 18, 19]. These theo-
ries are summarized by the following equation:

G = {ν(C0, p)− hµ(C0, p)}kBT . (1)

Here, C0, kB , T , ν, and µ are the initial polymer concen-
tration, Boltzmann’s constant, the absolute temperature,
and the number densities of elastically effective chains
and crosslinks, respectively. Note that ν and µ depend
on C0 and p. The empirical parameter h has a value
of 0 for the affine model, 1 for the phantom model, and
0 < h < 1 for the junction-affine model. This equation
is important not only because the network connectivity
and parameters can be evaluated from simple stretching
measurements, but also because several theories of elas-
ticity and rheological properties can be constructed based
on this relation [21–27]. Though Eq. 1 is a fundamental
equation for the elasticity of a polymer network, its valid-
ity has not been investigated for a broad range of C0 and
p values. Akagi et al. conducted verification experiments
of Eq. 1 by varying C0 only around p = 1, and showed
that the experimental value of the elastic modulus falls
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somewhere in between the two limits, i.e., the phantom
and affine models. However, they did not conduct exper-
iments for a broad range of C0 and p values and found no
general correlation between G and network defects. Ow-
ing to the uncertainty of Eq. 1, in most cases, the affine
model and phantom model are used for rubbers and gels
empirically.
One of the reasons why these problems remain un-

solved is the lack of precise and reliable experiments with
precisely controlled network parameters. Therefore, in
this study, we constructed well-defined model polymer
networks, and evaluated G for a broad range of both C0

and p. From these experiments, we determined the crit-
ical exponent f in the critical region. Furthermore, our
examination of the affine and phantom models showed
that all the G− p curves fell onto a single master curve,
which cannot be explained by the classical theories, when
we normalized G by the elastic modulus at p = 1, G0.
Here, we used a model polymer network called Tetra-

PEG gel [28], which is formed by A-B-type cross-end cou-
pling of two tetra-arm poly(ethylene glycol) (Tetra-PEG)
units. Previous neutron scattering, NMR, and tearing
studies of Tetra-PEG gels [20, 29, 30] confirmed that
(i) inhomogeneity of polymer concentration is largely
suppressed, (ii) elastically ineffective loops are reduced,
and (iii) there are no trapped entanglements because of
the well-defined prepolymer architecture. In a previous
study [28], Tetra-PEG prepolymers were equipped with
N -hydroxysuccinimide (NHS) or amine groups. How-
ever, because the NHS groups underwent spontaneous
hydrolysis, the amine groups remained unreacted in the
system and this makes the connectivity defects. In ad-
dition, the connectivity probability p, could not be pre-
cisely evaluated by IR measurements owing to the pres-
ence of the strong absorption of dissociated NHS. There-
fore, we newly prepared Tetra-PEG gels using Tetra-PEG
prepolymers modified woth mutually reactive maleimine
(Tetra-PEG-MA) and thiol (Tetra-PEG-SH) (Fig. 1).
We evaluated the time dependence of G and p using rhe-
ological and UV measurements.
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FIG. 1: Structures for Tetra-PEG prepolymers

Samples were prepared by mixing buffer solutions
of two kinds of four-arm star polymers, i.e., tetra-
maleimide-teminated PEG (Tetra-PEG-MA) and tetra-
thiol-terminated PEG (Tetra-PEG-SH) (Nippon Oil and
Fat Co.). The molecular weights, Mws, of Tetra-PEG-
MA and Tetra-PEG-SH were matched at 20 kg/mol. In
order to control the reaction rate, the polymers were

dissolved in phosphate-citrate buffer and the pH of the
buffer was (i) pH 3.8 for 10 and 20 mg/mL, (ii) pH 3.4
for 40 mg/mL, and (iii) pH 2.6 for 60-120 mg/mL.
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FIG. 2: Time dependence of the UV absorbance at 310 nm
for a polymer concentration of 40 mg/mL. Inset: Time de-
pendence of the storage elastic modulus and the loss elastic
modulus.

By definition, the connectivity probability p is the con-
nection probability between neighboring sites. There-
fore, in this study, p is defined as the ratio between re-
acted maleimide and the total number of arm ends for
Tetra-PEG-MA, i.e., p = {[MA](0) − [MA](t)}/4[Tetra-
PEG-MA]. Here, [MA](t) and [Tetra-PEG-MA] are the
concentration of maleimide at time t and the initial con-
centration of Tetra-PEG-MA, respectively. To evaluate
[MA](t), we measured the time course of the UV spec-
trum at 310 nm (JASCO V-630, Nihon-bunko, Japan),
as shown in Fig. 2. Here, the UV absorption at 310
nm is assigned to maleimide, as demonstrated in Fig. S1
(see Supplemental Material [31], Sec. I). Some subreac-
tions such as auto-oxidation of thiols and ring-opening
of maleimides are well known to occur in solution, and
could occur prior to or during hydrogel formation. How-
ever, as discussed in Fig. S1, these sub-reactions are
much slower than the main reaction, i.e., the formation
of a thioether bond, and therefore we can neglect such
subreactions. We observed the decrease of maleimide to
follow a second-order reaction, as shown in Fig. S2. We
estimated [MA](t) from A310(t), based on the propor-
tional relation between these parameters depicted in Fig.
S2 (see Supplemental Material [31], Sec. II). We also
measured the time course of the storage elastic modu-
lus (G′) and the loss elastic modulus (G′′) at a constant
frequency (1 Hz) and a strain (2 %) by using a rheome-
ter (MCR501, Anton Paar, Austria). The inset of Fig.
2 shows the time courses of G′ and G” during gelation
process (40 mg/ml). G′ crossed over G” at around 5490
s, and we assumed that this point corresponds to the
sol-gel transition point or the percolation threshold. The
connectivity probability at the percolation threshold, pc,
was determined as p at time when G′ and G′′ crossed
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over in the rheological measurements. From the UV mea-
surements and rheological measurements, we obtained a
relation between G and p, as shown below.
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FIG. 3: Critical behavior of the elastic modulus. The solid
lines are fits to a power law. Inset: Concentration dependence
of the reaction probability at the gelation threshold, pc. The
dotted line corresponds to pc = 0.39, which is the percolation
threshold of a diamond lattice.

We plotted pc as a function of concentration, as shown
in the inset of Fig. 3. The dotted line in the inset corre-
sponds to the percolation threshold of a diamond lattice
(pc = 0.39). Note that the overlapping concentration,
C*, is around 40 mg/mL according to our previous work
[20]. We found that pc does not depend on polymer con-
centration and is in close agreement with the percolation
threshold of a diamond lattice when the polymer concen-
tration is near or above C*. These results clearly confirm
the ideality of Tetra-PEG gel, the accuracy of the exper-
imental data, and the validity of percolation theory [36].
Note that the percolation threshold for a z = 4 bethe
lattice is 0.33, which indicates that this network is bet-
ter described by percolation theory than a Bethe lattice.
Here, z is the coordination number, i.e., the number of
arms in a single tetra-polymer. On the other hand, pc in-
creased with decreasing polymer concentration when the
polymer concentration is below 20 mg/ml. This increase
of pc suggests that higher connectivity is necessary for
forming an infinite cluster because the space is not fully
filled with polymers below 20 mg/mL. G is plotted as a
function of p−pc in Fig. 3. It should be noted that this is
the first experiment in which G is plotted as a function
of p − pc near the critical region. According to previ-
ous studies [8, 37], G′ strongly depends on the frequency
near the critical point, which is problematic because the
plateau values of G′ are required for this analysis. How-
ever, as demostrated in Fig. S3, we confirmed that G′

does not depend on the frequency when p − pc > 0.03.
In addition, we observed a deviation from single power
law behavior at p− pc ≥ 0.3 because this range is out of
critical region, as shown in a previous study [38]. Thus,
we fitted G to a power law for 0.03 ≤ p−pc ≤ 0.2 to eval-

uate f . The value of the critical exponent f extracted
from the figure is 1.95± 0.05. This result indicates that
the elasticity of gels is analogous to the conductivity of
a resistor network, as predicted by de Gennes [5].
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FIG. 4: (a) Experimental G − p plot and theoretical pre-
dictions for affine model and phantom models (120 mg/mL).
Inset: Concentration dependence of the elastic modulus at
p = 1, as evaluated from the fitting result. The theoreti-
cal predictions of affine and phantom network model are also
shown. (b) p dependence of the reduced elastic modulus at
various C0 values. The solid line corresponds to the theo-
retical prediction from the effective medium approximation
(EMA). Inset: Schematic illustration of the EMA. The net-
work on the left represents the original system in which neigh-
boring sites are randomly connected with chains of elastic
constant, g0. The network on the right represents the EMA
with a nondisordered structure in which all neighboring sites
are connected with chains of elastic constant gm.

Next, we focus on the region far from the sol-gel tran-
sition point. First, we briefly review previous results for
the classical theories of rubber elasticity, such as affine
and phantom models. As mentioned above, it is well
established that the elastic modulus falls somewhere in
between the two limits, i.e., phantom and affine models,
as indicated by Eq. 1 [1–3, 18, 19]. For example, Akagi
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et al. showed that phantom model is valid around C∗

and around p = 1, whereas experimental elastic modulus
values deviate from phantom model and approach affine
model as the polymer concentration increases. In addi-
tion, in the previous study, the p dependence of G was
only examined in the region around C∗ and the phantom
model was found to reproduce the experimental results
well [39]. However, to the best of our knowledge, the p
dependence of G in the region well above C∗ is poorly
understood. Here, the p dependence of G from 40 to
100 mg/mL and 120 mg/mL is plotted in Fig. S4 and
Fig. 4(a), respectively. In order to plot the theoreti-
cal predictions for affine model and phantom models, we
estimated ν and µ by using tree-like theory (see Supple-
mental Material [31], Sec. IV). Note that 40 mg/mL is
the C∗ value in this study as determined in the previous
study [20]. As shown in Fig. S4(a), the p dependence of
G around C∗ is close to the theoretical prediction of the
phantom model, as discussed in a previous study [39].
However, as the concentration increases, the experimen-
tal G− p relations gradually deviate from the prediction
of the phantom model. Here, we defined G0 as G at
p = 1 and evaluated G0 values by a fitting to a linear
function for p > 0.8 and extrapolating to p = 1. The
extrapolated values (G0) are plotted in the inset of Fig.
4(a) together with the predictions of affine and phantom
models. As shown in the inset of Fig. 4(a), the elas-
tic modulus around C∗ coincides with the prediction of
the phantom model, whereas G0 values deviate from the
phantom model and approach the affine model as the
concentration increases. Note that these data are highly
reproducible as shown in Fig. S5. This deviation from
the phantom model does not originate from trapped en-
tanglements because tearing test proved that Tetra-PEG
gels have no trapped entanglements [20]. These results
agree with the previous observation that the elastic mod-
ulus falls somewhere between the two limits, i.e., phan-
tom and affine models [18–20]. However, the classical
theories cannot predict where in this range the elastic
modulus falls. To explore this point, we normalized G
by G0. As shown in Fig. 4(b), all the G/G0 − p curves
fall onto a single master curve. This master curve cannot
be explained by the classical theories of rubber elastic-
ity, as shown by the theoretical predictions of G/G0 − p
for the affine model and phantom model plotted in Fig.
S6(a), which do not overlap each other.

To understand this master curve, we examined the ef-
fective medium approximation (EMA). EMAwas first de-
veloped to describe the conductivity of bond-disordered
conductance networks [40] and was subsequently ex-
tended to describe diffusivity in porous media [41] and
the elasticity of Hookean spring networks [42]. Recently,
significant progress in the EMA has allowed its appli-
cation to non-linear elasticity and the dynamical rheol-
ogy of networks of intracellar biopolymer [43–47]. In a
previous study [39], we generalized this EMA theory to
the rubber elasticity of Gaussian chain networks. In the
EMA theory, we assume that (i) a chain connecting node

i to j has potential Uij = g0l
2

ij/2 and (ii) the position of
crosslinks can be determined to achieve the force balance.
Here, g0 and lij are the elastic constant of a single chain
and the distance between node i and j, respectively. One
should note the following two points. First, the potential
in this study is different from that of a Hookean spring
network, i.e., Uij = g0 (lij − l0)

2
/2, where l0 is the nat-

ural length of a Hookean spring. Therefore, our system
(l0 = 0) belongs to a different universality class from
Hookean spring networks (l0 6= 0) [48, 49], but the same
class as the electric conductivity problem. Second, situ-
ation (ii) corresponds to the Kirchoff law for the electric
conductivity of resistor networks. The main assumption
in the EMA is that the bond-disordered network has the
same mechanical properties as a nondisordered network
with the renormalized elastic constant gm, as depicted in
Fig. 4(b). This value is determined by requiring that the
strain fluctuations of nodes in the disordered network
from non-disorder network should have a zero average.
From this assumption, the ratio of the elastic modulus
at p, G, to that at p = 1, G0, should be equal to

G/G0 = (p− 2/z)/(1− 2/z) . (2)

This approximation is valid far above the percolation
threshold because the strain fluctuation in the disor-
dered network from non-disordered network becomes
quite large near the percolation threshold and mean-field
approximation is broken down as discussed in the pre-
vious studies [39, 50, 51]. As a result, EMA predicts
G ∼ |p − pc|

1 near the percolation threshold, which is
different from our experimental results. Therefore, in
this section, we focus on the region far above the perco-
lation threshold as mentioned above. As shown in Fig.
4(b), the prediction of the EMA reproduces the master
curve of the G/G0−p relation well. This excellent agree-
ment strongly indicates the validity of the EMA frame-
work and the strong correlation among many kinds of
networks such as polymer networks, Hookean spring net-
works, conductance networks, and porous media.
One should note the relation between the classical the-

ories and the EMA. Importantly, when we focus on the
p dependence of normalized G, the phantom model coin-
cides with the EMA, whereas the affine does not. To vi-
sualize this point, the theoretical predictions of G/G0−p
for the phantom model and affine model are plotted with
that of EMA in Fig. S6(b) and (c). When we focus on
C∗ concentration, for which the phantom model should
be applicable, there is not observable difference between
the EMA and the phantom model although the EMA is
not based on the classical theories of rubber elasticity.
This point was one of the main findings and was also
confirmed by previous experiments only around C∗ and
simulations [39]. On the other hand, when we focus on
C0 > C∗ region, where the affine model should be appli-
cable, a difference between the EMA and the affine model
for p > 0.6 is observed, as shown in Fig. S6(c), and we
can distinguish which theories are valid. This feature has
not been pointed out and proved previously owing to the



5

lack of experiments for a broad range of C0 and p.
Finally, we examined generalization of the present re-

sults to more disordered materials. In order to generalize
the present results, it is necessary to rewrite equations by
using ν or µ instead of p because ν or µ are experimen-
tally accessible in disordered materials. According to our
results, the EMA states that G should always be propor-
tional to p−2/z, (G ∝ p−2/z). Moreover, the theoretical
prediction of G/G0 − p for the phantom model and the
EMA coincide as depicted in Fig. S6(b). Because the
term ν−µ term contributes to the p dependence of G in
the phantom model, the above coincidence implies that
ν−µ is proportional to p−2/z, (ν−µ ∝ p−2/z). There-
fore, G should be proportional to ν − µ, (G ∝ ν − µ).
This expression indicates that elastically effective loops
play an important role because ν − µ corresponds to the
number of elastically effective loops [3]. To summarize
our study, G can be described as

G = (ν − µ)g1 . (3)

Here, g1 is a proportionally constant. Note that this
g1 value varies with the initial polymer concentration,
C0, which is different from the phantom model, where
g1 = kBT . This functional form shown by Eq. 3 should
be useful and applicable for materials that are more dis-
ordered than the Tetra-PEG system.
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