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In low-temperature metallic magnets, ferromagnetic (FM) and antiferromagnetic (AFM) orders
can exist, adjacent to one another or concurrently, in the phase diagram of a single system. We show
that universal quantum effects qualitatively alter the known phase diagrams for classical magnetsi:
They shrink the region of concurrent FM and AFM order, change various transitions from second
to first order, and, in the presence of a magnetic field, lead to either a quantum triple point where
the FM, AFM and paramagnetic phases all coexist, or to a quantum critical end point.

Quantum phases of matter, and the quantum phase
transitions (QPTs) between them, are of great current
interest [1]. One area that has received much attention
is metallic quantum magnets, which are known for very
complex phase diagrams as a function of temperature,
magnetic field, and non-thermal control parameters such
as pressure or chemical composition [2]. Apart from in-
trinsic interest in magnetism, their understanding is im-
portant for such diverse problems as high-Tc supercon-
ductivity, iron-based superconductors, and Kondo sys-
tems. The QPT from a quantum ferromagnet (FM) to a
paramagnet (PM) by now is well established to be gener-
ically discontinuous or first order as a result of soft or
massless excitations in zero-temperature metals that cou-
ple to the long-wavelength magnetization fluctuations.
This was predicted theoretically by Belitz, Kirkpatrick
and Vojta (BKV) [3, 4], and confirmed by numerous ex-
periments [2]. This is a dramatic departure from the
second-order transition observed at higher temperatures,
which is qualitatively described by a classical Landau the-
ory. The reconciliation between the two is provided by a
quantum tricritical point (QTCP; see Ref. 5 for our use
of the “quantum” prefix) in the T -dependent phase dia-
gram. In an applied magnetic field h tricritical wings ap-
pear that end in a quantum wing-critical point (QWCP)
[6]; this also has been observed [2].

Quantum antiferromagnets (AFMs) represent a very
different physical situation. Here the order parame-
ter (the staggered magnetization) is a short-wavelength
quantity that the fermionic soft modes do not couple to
directly, and the AFM-PM is generically continuous or
second order. This dichotomy raises interesting ques-
tions for systems where both AFM and FM orders are
present, either in adjacent phases or concurrently in the
same phase [7]. Such materials range from relatively
simple compounds, such as FeRh [8] and NbFe2 [9], to
more complex Kondo-lattice systems such as CeRuPO
[10] and CeAgSb2 [11]. The transition from a pure FM
to a pure AFM in clean systems is usually observed to be
discontinuous, although in systems that contain substan-
tial amounts of disorder, such as Mn-doped Ni2MnGa
[12], Ba0.6K0.4Mn2As2 [13], and CaRu1−xMnxO3 [14],
there may be a continuous transition from a pure FM

phase to a phase of concurrent FM and AFM orders.
The phase diagrams are complicated, have been only in-
completely mapped out for most systems, and contain
a complex mixture of first and second-order transitions.
One of the most detailed phase diagrams is provided by
a recent study of LaCrGe3 under pressure and in a mag-
netic field, which found an AFM dome at high pressure,
with an adjacent FM phase and a first-order line of meta-
magnetic transitions extending from the dome boundary
to higher magnetic fields [15].

These observations raise important questions, includ-
ing: (1) What is the generic topology of quantum phase
diagrams involving both AFM and FM order? (2) What
is the nature of the various QPTs? (3) Why does concur-
rent FM+AFM order rarely occur, so it draws consider-
able attention when it does [13, 16, 17]?

In this Letter we investigate these questions and dis-
cuss a free-energy functional that answers them, is in
good agreement with existing experiments, and makes
predictions for future ones. For three-dimensional (3 -D)
systems the free-energy density has the form

f = r n2 + tm2 + ṽ m2(m2 + n4) ln(m2 + n4 + T 2)

+ un4 + vm4 + 2wn2m2 − hm . (1)

Here m and n are the average magnetization and stag-
gered magnetization, respectively, h is the external mag-
netic field, and T is the temperature, all measured in
suitable microscopic units. The interpretation of the pa-
rameters r, t, u, and v is the same as in an ordinary
Landau theory for FM or AFM order. r and t depend
on T and other control parameters, such as pressure p,
in complicated ways. At critical values of these param-
eters, rc(Tc, pc), tc(Tc, pc), which in turn correspond to
critical values of T and p, phase transitions occur that
can be second order or first order. u and v depend on
the control parameters in less crucial ways; we only need
to assume that they are positive (otherwise one needs to
keep term of higher order in m and n). w parameterizes
the free-energy cost of concurrent FM and AFM orders:
Large and small values of w penalize and favor concurrent
orders, respectively. Stability requires w > −w∗(u, v, ṽ);
in the classical case one has w∗(u, v, ṽ = 0) =

√
uv. For
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ṽ = 0 this is the classical Landau theory discussed by
Moriya and Usami (MU) [18, 19], which is analytic in n
and m. The quantum effects that are crucial for under-
standing the low-temperature phase diagrams are con-
tained in the logarithmic term with coupling constant
ṽ. For a derivation of this term, see the Supplemen-
tal Material, which includes Refs. [20–26]; here we con-
fine ourselves to some plausibility arguments. For a pure
FM, n = 0, Eq. (1) reduces to the theory of BKV, and
the basic question is how an AFM order parameter en-
ters this term. It cannot do so in the same way as the
FM order parameter, since it is characterized by a large
wave number. However, a pair of AFM order parame-
ters can combine to couple to both the homogeneous FM
order and the fermionic soft modes, which suggests that
n2 enters the logarithmic term in the same way as m
does. The derivation confirms this, and yields a positive
coupling constant ṽ > 0 that measures the strength of
the quantum fluctuations. The nonanalytic nature of the
quantum term, which is in sharp contrast to Landau the-
ory, reflects the fact that soft or massless excitations have
been integrated out to derive it. We note that the n4 term
multiplying the logarithm is of higher order in the order
parameters and should not be taken seriously. It has
no qualitative effects for our discussion. Finally, we note
that in 2-D systems the quantum effects are stronger, and
the logarithmic term with coupling constant ṽ in Eq. (1)
gets replaced by

−ṽ m2(m2 + n4)1/2 .

We now compute 3 -D phase diagrams by minimizing
the free-energy functional f with respect to m and n.
For simplicity, we will do so for T = 0. For fixed nonzero
T the results are qualitatively the same as long as T
is smaller than a threshold value related to a tricritical
temperature. The behavior in the vicinity of that tem-
perature, as well as the stronger quantum effects in 2 -D,
will be discussed elsewhere [27].

r-t phase diagrams: For the most basic phase dia-
gram in the plane spanned by r and t at h = 0, with
all other parameters fixed, there are two possibilities: i)
A single discontinuous QPT from a pure FM state to a
pure AFM state, or, ii) a continuous QPT from a FM
phase to an FM+AFM phase, followed by a discontin-
uous transition to a pure AFM phase. Which of these
possibilities is realized depends on the parameter w in
Eq. (1). For w larger than a critical value one has the
situation shown in Fig. 1(a). There is a single transition
from FM to AFM, and no FM+AFM phase occurs. A
qualitative change compared to the classical phase dia-
gram discussed by MU, shown in the inset, is that the
FM-PM transition is first order due to the quantum fluc-
tuations. As a result, the bicritical point (BCP) in the
classical phase diagram is replaced by a quantum criti-
cal end point (QCEP) [5, 28]. Quantitatively, the quan-
tum fluctuations enlarge the FM phase at the expense of

Figure 1: Phase diagrams in the r-t plane for the quantum
(ṽ = 0.4, main panels) and classical (ṽ = 0, insets) free-energy
functionals for the large-w (a) and small-w (b) case. Dashed
and solid lines denote first and second-order transitions, re-
spectively. QCEP denotes quantum critical end points, BCP
denotes a bicritical point, and TetCP a tetracritical point; see
Refs. 5, 28 for the nomenclature used. Parameter values are
u = v = 1, w = 2 for panel (a) and w = 0.5 for panel (b).

the AFM one. For w smaller than the critical value one
has the situation shown in Fig. 1(b), with an FM+AFM
phase in between the FM and AFM phases in a part of
the phase diagram. In a qualitative change from the clas-
sical phase diagram discussed by MU, which is shown in
the inset, a direct FM-to-AFM transition exists, there
are two QCEPs instead of a single tetracritical point
(TetCP), and the existence of this phase is restricted to
sufficiently negative values of r. The latter feature can
be understood from a basic property of the free energy:
Classically, for any solution with m > 0 and n > 0 one
has n2 = (−r − 2wm2)/2u, and a relation of the same
structure remains true in the quantum case. The quan-
tum fluctuations make m discontinuous, which implies
that n can be real, and the FM+AFM solution can exist,
only for sufficiently large negative r. In addition to the
FM-to-PM transition, those from FM to AFM, and from
FM+AFM to AFM, are all first order as a result of the
quantum fluctuations; the latter thus drastically change
the nature of the phase diagram. We note that across
the first-order FM-AFM transition in Fig. 1(b) the AFM
order parameter is discontinuous, just as the FM one is.
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This is an example of quantum fluctuations driving an
AFM transition first order even though they couple only
indirectly to the AFM order parameter.

In order to discuss phase diagrams directly relevant
to experiments, consider a control parameter p on which
both t and r depend. Changing p at fixed low T will thus
map out a path in the t-r plane. In an actual experiment,
p is often, but not necessarily, realized by hydrostatic
pressure [2]. For simplicity, consider linear paths:

r(p) = r0 + (r1 − r0)p , t(p) = t0 + (t1 − t0)p . (2)

h-p phase diagrams: In the presence of a magnetic
field h the free-energy landscape contains a metamag-
netic first-order transition, i.e., a discontinuity in the FM
order parameter, that corresponds to the tricritical wing
in the purely FM theory. This transition may or may not
be physically realized, depending on whether or not the
global minimum of the free energy corresponds to AFM
order. For relatively large w, there are three possibil-
ities: i) For small ṽ the QWCP, which marks the end
point of the tricritical wing, lies inside the AFM dome,
see Fig. 2(a). In this case the metamagnetic transition
including the QWCP, is not observable, and the struc-
ture of the phase diagram is qualitatively the same as in
the classical MU theory [18]: The AFM dome is delin-
eated on the left by a first-order transition to a (field-
polarized) FM state, and on the right by a second-order
transition to a field-polarized PM state, with a tricrit-
ical point (TCP) separating the two parts of the dome
boundary. The TCP may lie to the left or to the right
of the dome maximum, depending on parameters, see
also Fig. 3(a) and the related discussion. ii) For larger
values of ṽ the QWCP lies outside the AFM dome. If
the tricritical wing crosses the dome boundary where the
AFM becomes unstable via a first-order transition, there
is a quantum triple point (QTP) where the field-polarized
FM and PM phases coexist with each other and with the
AFM phase. The tricritical wing now has a part that
is outside of the AFM dome and hence observable, and
the dome boundary consists of three parts: A first-order
AFM-FM transition, a first-order AFM-PM transition,
and a second-order AFM-PM transition, with the TCP
that also exists in the classical phase diagram separating
the latter two. This case is illustrated in Fig. 2(b). iii)
For even larger values of ṽ the tricritical wing intersects
the AFM dome in its second-order section. The dome
boundary now consists of only two sections, one first or-
der and one second order, that are separated by a QCEP,
see Fig. 2(c). In all three cases, the near-linear shape of
the left side of the AFM dome reflects the unobservable
part of the tricritical wing inside the dome and thus is a
direct consequence of the quantum fluctuations. It is in
sharp contrast to the much more symmetric and evenly
curved phase diagram in MU theory. We note in pass-
ing that the QWCP and the asymptotic behavior of the
AFM-PM phase boundary near p = 1 can be determined

Figure 2: Phase diagrams in the h-p plane for u = v = 1,
w = 2, and three different values of the quantum fluctuation
parameter ṽ. For ṽ = 0.5, panel (a), the structure is qualita-
tively the same as in the classical MU theory; for larger values
of ṽ it is drastically different. Dashed and solid lines denote
first and second-order transitions, respectively. The dotted
(green) line is the unobservable part of the tricritical wing
inside the AFM dome and does not represent a phase transi-
tion. Special points are a tricritical point (TCP), a quantum
wing critical point (QWCP), a quantum triple point (QTP),
and a quantum critical end point (QCEP), see see Refs. 5, 28
for the nomenclature used. p parameterizes the linear paths
in the r-t plane, Eq. (2), shown in the insets.

analytically; the other parts of the phase diagram were
obtained by numerically minimizing the free energy.

For relatively small w, there are two possibilities: i) If
the path in the r-t plane does not cross the FM+AFM
phase, then the p-h phase diagram is qualitatively the
same as in the large-w case, see Fig. 3(a), which has the
same structure as Fig. 2(a). ii) If the path does cross
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Figure 3: Phase diagram in the h-p plane for u = v = 1,
w = 0.5, ṽ = 0.4. The paths parameterized by p are shown in
the insets. Solid and dashed lines denote continuous and first-
order transition, respectively. QTCP and QCP denote quan-
tum tricritical and quantum critical points, respectively, see
see Ref. 5 for the nomenclature used. The dotted (green) line
in panel (a) is the unobservable tricritical wing, and QWCP
is the unobservable quantum wing-critical point. Note the
qualitative difference between the two paths.

the FM+AFM phase, a qualitatively new feature arises:
For small external fields, there is a first-order transition
from the FM+AFM phase to the FM phase. This is a
true phase transition within the AFM dome that has no
analog in the large-w case. This line of first-order tran-
sitions ends in a quantum critical point (QCP), which in
Fig. 3(b) lies within the AFM dome. This is still true for
the larger values of ṽ used in Figs. 2(b, c). The reason
is that with increasing ṽ the FM+AFM phase in the r-t
plane is pushed to larger negative r values. The resulting
increase in the h-scale that characterizes the height of the
AFM dome mostly compensates for the increased size of
the tricritical wing, and the first-order transition remains
within the dome even for ṽ = 0.75. With decreasing ṽ
the length of the first-order line decreases, and in the
classical case it shrinks to zero and the only transition
within the dome is a critical point at h = 0 [18].

Relation to Experiments: Our phase diagrams are di-
rectly applicable to experimental results in T = const.
planes at low T , and they are in excellent qualitative
agreement with existing data. In particular, a recent

experimental study of LaCrGe3 has found an h-p phase
diagram (p being hydrostatic pressure) consistent with
Fig. 2(c), with a QWCP well outside the AFM dome
[15]. For CeRuPO a phase diagram in T -p-h space has
been partially mapped out [10]. In the h-p plane a meta-
magnetic transition was found outside the AFM dome
that also is consistent with the existence of the FM-PM
first order transition line in Figs. 2(b,c). Additional ex-
perimental information is desirable to determine whether
the QTP case of Fig. 2(b), or the QCEP case of Fig. 2(c),
is realized in this material. Experiments on other classes
of materials are needed to check for phase diagrams of
the type shown in Fig. 3. We note that the quantum
effects are necessary to understand the observed phase
diagrams: The only feature that can be understood al-
ready within the classical MU theory is the first-order
nature of the FM-AFM transition, see Fig. 1(a).

Our results help explain why the FM+AFM phase is
rarely seen [13, 16, 17]: It requires a special range of w-
values and special properties of the path in the r-t plane,
since the quantum effects push the FM+AFM phase to
negative r-values of, see Figs. 1(b), 3.

As mentioned above, for temperatures that are not
small compared to the tricritical temperature in the pure
FM problem, qualitatively new features appear in the
phase diagram including new QTCPs or QCEPs. This
will be discussed elsewhere [27].

This work was supported by the National Science
Foundation under Grant No. DMR-1401449 and Grant
No. DMR-1401410. Part of this work was performed at
the Telluride Science Research Center (TSRC). We thank
Valentin Taufour for discussions.

[1] S. Sachdev, Quantum Phase Transitions (Cambridge
University Press, Cambridge, 1999).

[2] M. Brando, D. Belitz, F. M. Grosche, and T. R. Kirk-
patrick, Rev. Mod. Phys. 88, 025006 (2016).

[3] D. Belitz, T. R. Kirkpatrick, and T. Vojta, Phys. Rev.
Lett. 82, 4707 (1999).

[4] T. R. Kirkpatrick and D. Belitz, Phys. Rev. B 85, 134451
(2012).

[5] Special points in the phase diagram that exist due to
quantum fluctuations we call “quantum” special points
and prepend their abbreviations with a Q, even if they oc-
cur at T > 0. Special points that exist even in a classical
Landau theory we denote by their usual names without
the “quantum” designation, regardless of whether or not
they exist at T = 0. Note that MU [18] theory, Eq. (1)
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