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We study sound in Galilean invariant systems of one-dimensional fermions. At low temperatures,
we find a broad range of frequencies in which in addition to the waves of density there is a second
sound corresponding to ballistic propagation of heat in the system. The damping of the second
sound mode is weak, provided the frequency is large compared to a relaxation rate that is exponen-
tially small at low temperatures. At lower frequencies the second sound mode is damped, and the
propagation of heat is diffusive.

The low energy properties of systems of one-
dimensional interacting fermions are usually described in
the framework of the Tomonaga-Luttinger liquid theory
[1–4]. Its main feature is that the elementary excita-
tions of the system are treated as noninteracting bosons
with linear dispersion. The advantage of this approach
is that it adequately describes the low-energy properties
of the system at any strength of interaction between the
fermions. This theory provided the foundation for under-
standing the basic properties of one-dimensional electron
systems, such as the power law renormalizations of the
impurity scattering and tunneling density of states [5, 6],
observed in subsequent experiments [7–10].
Much of the recent work on the theory of one-

dimensional systems focused on the properties not cap-
tured by the Luttinger liquid picture, such as the na-
ture and lifetimes of elementary excitations in these sys-
tems. When the interactions between the bosonic exci-
tations are taken into account, the excitations in spinless
Luttinger liquids become fermions [11] with finite decay
rate τ−1

ex ∝ T γ , with the exponent γ = 7 [12–14] or 6
[15], depending on the details of the interaction between
the physical particles forming the Luttinger liquid. For
weakly interacting spin- 12 fermions τ−1

ex ∝ T [16]. Impor-
tantly, the scattering processes giving rise to the decay of
elementary excitations do not involve backscattering of
fermions, i.e., each quasiparticle remains in the vicinity
of the nearest Fermi point. The backscattering processes
involve hole states near the bottom of the band, and their
rate is exponentially small, τ−1 ∝ e−D/T [17–21], where
D is the energy scale of order Fermi energy.
In this paper we consider the dynamics of a system of

one-dimensional fermions in the absence of disorder at
low temperatures T ≪ D. Such a system possesses three
conserved quantities: the total number of particles N ,
energy E, and momentum P . At very low frequencies
ω ≪ τ−1 the system is close to equilibrium and can be
described by classical hydrodynamics. We will be pri-
marily interested in the regime

τ−1 ≪ ω ≪ τ−1
ex . (1)

In this case the gas of elementary excitations is in ther-
mal equilibrium, but can move with velocity uex not equal

to the velocity u of the center of mass of the fluid [20].
At such frequencies the system possesses a fourth con-
served quantity: the difference between the numbers of
the right- and left-moving fermions J = NR −NL. Be-
cause relaxation of J involves backscattering of fermions,
it is negligible at ω ≫ τ−1.

The detachment of the gas of elementary excitations
from the rest of the fluid is a well-known feature of super-
fluid 4He [22, 23]. The appropriate theoretical descrip-
tion of the motion of this system is in terms of two-fluid
hydrodynamics that predicts the existence of two acous-
tic excitation modes. The first sound is the usual wave
of particle density, whereas the second sound is a wave
of entropy that propagates at a different velocity. Our
goal is to develop a similar two-fluid hydrodynamics of
the system of one-dimensional fermions in the frequency
range (1) and to demonstrate the existence of the second
sound in this system.

We will focus on the system of one-dimensional spin-
1
2 fermions of mass m with repulsive interactions and
assume spin rotation symmetry and Galilean invariance.
To leading order in T/D ≪ 1, the dynamics of the system
is described by the conventional Luttinger liquid theory
with linear excitation spectrum [24]. Our system sup-
ports two branches of bosonic excitations, corresponding
to the charge and spin sectors of the Hamiltonian, and
propagating at different velocities, vρ and vσ. The mo-
mentum of the system is [3]

P =
h

4L
NJ +

∑

k

k(Nρ
k +Nσ

k ), (2)

where N is the total nomber of fermions in a system
of size L with periodic boundary conditions, h is the
Planck’s constant, while Nρ

k and Nσ
k are the occupation

numbers of the bosonic excitations with momentum k
in the charge and spin channels, respectively. The first
term in Eq. (2) accounts for the fact that at NR 6= NL

the ground state of the system has a nonvanishing mo-
mentum pFJ , where the Fermi momentum pF = hN/4L.
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Similarly, the energy of the system is given by

E =
mv2ρ
2N0

(N −N0)
2+

h2NJ2

32mL2
+
∑

k

[ǫρ(k)N
ρ
k + ǫσ(k)N

σ
k ],

(3)
c.f. [3]. In the first term N0 is some reference value of the
particle number and we have used the usual relation be-
tween the ground state compressibility and vρ. Bosonic
excitations in the Luttinger liquid are superpositions
of small momentum particle-hole pairs near each Fermi
point. At NR = NL the energies are ǫρ,σ(k) = vρ,σ|k|.
At NR 6= NL the quasiparticle ground state is moving
with velocity

u0 =
hJ

4mL
. (4)

The dependence of the quasiparticle energies on u0,

ǫρ,σ(k) = vρ,σ|k|+ u0k, (5)

is obtained by performing Galilean transformation to the
stationary frame.
At frequencies below τ−1

ex , collisions between the
bosonic excitations occur very quickly compared with the
typical time scale ω−1, and to first approximation one
can assume that the gas of excitations is in an equilib-
rium state described by the Bose distribution

Nρ,σ
k =

[

exp

(

ǫρ,σ(k)− uexk

T

)

− 1

]

−1

. (6)

Since the collisions between excitations conserve their to-
tal momentum, the equilibrium is characterized by the
velocity uex, which is not necessarily equal to the veloc-
ity u0 associated with the Fermi surface.
As discussed above, in the absence of backscattering

there are four conserved macroscopic characteristics of
the fluid: the number of particles, energy, momentum
and J . The hydrodynamic description of the fluid is ob-
tained by writing these conservation laws in the form of
continuity equations on the respective densities:

∂tn+ ∂xj = 0, (7a)

∂tε+ ∂xjε = 0, (7b)

∂tp+ ∂xjp = 0, (7c)

∂tu0 + ∂xju0
= 0. (7d)

Here n, ε, and p are densities of particles, energy, and
momentum of the system, respectively. Instead of den-
sity J/L we use the velocity u0 defined by Eq. (4). The
corresponding currents j, jε, jp, and ju0

are yet to be
determined.
Below we only consider the regime of small deviation

of the system from thermal equilibrium, which will be
described by two velocities u0 and uex and the deviations
of densities n and s of particles and entropy from mean

values, n − n0 and s − s0. We start by evaluating ε
and p in the leading order in these small parameters.
At finite temperature, the dominant contribution to the
energy density ε is due to the quasiparticle excitations.
Substituting the occupation numbers (6) into the last
term in Eq. (3), we obtain

ε =
πT 2

6~ṽ
=

3~

2π
ṽs2, ṽ =

(

1

vρ
+

1

vσ

)

−1

. (8)

Here we applied the relation ∂ε/∂s = T to find the en-
tropy density s = πT/3~ṽ and expressed ε in terms of s.
Combining Eqs. (4)–(6) with (2), we find the momentum
density

p = mnu0 +
2ε

v22
(uex − u0), v2 =

(

v−1
ρ + v−1

σ

v−3
ρ + v−3

σ

)

−1/2

.

(9)
Then, using Galilean invariance we immediately obtain

the particle current j = p/m in the form

j = nu0 +
2ε

mv22
(uex − u0). (10a)

The remaining three currents can be obtained using the
kinetic equation for elementary excitations and account-
ing for the fact that collisions do not change the number
of particles, momentum, energy and J . The method was
developed in the theory of superfluidity [23]. When ap-
plied to the Luttinger liquid, the results take the form

jε =
∑

λ=ρ,σ

∫

dk

h
Nλ

k

[

j∂nǫλ(k) + ǫλ(k)
∂ǫλ(k)

∂k

]

,

jp = j(0)p +
∑

λ=ρ,σ

∫

dk

h
Nλ

k

[

n∂nǫλ(k) + k
∂ǫλ(k)

∂k

]

,

ju0
=

1

m



µ(0) +
∑

λ=ρ,σ

∫

dk

h
Nλ

k ∂nǫλ(k)



 .

Here j
(0)
p and µ(0) are the pressure and chemical potential

of the Luttinger liquid at T = 0. Using Eqs. (5) and (6),
to leading order in u0 and uex we find

jε = ε
∂nṽ

ṽ
j + 2εuex, (10b)

jp = j(0)p + ε
∂n(nṽ)

ṽ
, (10c)

ju0
=

µ(0)

m
+ ε

∂nṽ

mṽ
. (10d)

We are now in a position to transform Eq. (7) into a
set of four differential equations on four hydrodynamic
parameters of the fluid: n, s, u0 and uex. Substituting
Eq. (10a) into (7a), we find

∂tn+ n ∂xu0 +
2ε

mv22
(∂xuex − ∂xu0) = 0. (11a)
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When substituting Eq. (8) into (7b), one should use the
expression in terms of the entropy density s and keep
in mind that ṽ is a function of density n that in turn
depends on time. Expressing the resulting ∂tn with the
aid of Eq. (7a) and using the expression (10b) for jε, we
obtain

∂ts+ s ∂xuex = 0. (11b)

This result has the form of the continuity equation ex-
pressing conservation of entropy, which holds to linear
order in deviation from equilibrium. Since the entropy is
transported only by the gas of excitations, one expects
the entropy current in the form js = suex, in agreement
with Eq. (11b).
When substituting Eqs. (10c) and (10d) into (7c) and

(7d) one must evaluate the derivatives of the ground state

chemical potential µ(0) and pressure j
(0)
p with respect to

density. The chemical potential is easily obtained from
the first term in Eq. (3), resulting in ∂nµ

(0) = mv2ρ/n.
The derivative of the pressure is found using the thermo-

dynamic relation ∂nj
(0)
p = n∂nµ

(0) = mv2ρ. Then Eq. (7c)
takes the form

∂tu0 +
2ε

mnv22
(∂tuex − ∂tu0)

+v2ρ

[

1 + ε
∂2
n(nṽ)

mv2ρ ṽ

]

∂xn

n
+

2ε

mn

∂n(nṽ)

ṽ

∂xs

s
= 0. (11c)

To leading order at T → 0, substitution of Eq. (10d)
into (7d) gives the same result, because in this limit
p = mnu0. Taking the difference of these two equations,
which accounts for the time dependence of the momen-
tum of the gas of excitations, we arrive at

∂tuex − ∂tu0 + v22
n∂nṽ

ṽ

∂xn

n
+ v22

∂xs

s
= 0. (11d)

To study the propagation of collective modes in one-
dimensional liquids, we now solve the system of equa-
tions (11). In the low-temperature limit one can set
ε = 0 in Eqs. (11a) and (11c). One easily finds two
propagating-wave solutions proportional to e−iωt+iqx.
First, Eqs. (11a) and (11c) give rise to a phonon-like
mode with the spectrum ω = vρ|q|. This mode is de-
termined by the dynamics of the variables n and u0, de-
scribing the waves of particle density. Due to the presence
of mixing terms in Eq. (11d), the phonon is accompanied
by the oscillation of entropy density s and velocity of the
gas of excitations uex.

Second, there is a solution with the spectrum ω = v2|q|
that describes waves of s and uex, whereas n = n0 and
u0 = const. This wave of entropy is fully analogous to the
second sound in superfluid 4He. The existence of the sec-
ond sound in a system of one-dimensional fermions with
repulsive interactions is the main result of this paper.

Our discussion so far assumed that the frequencies of
interest are in the range (1). In other words, we set
τex = 0 and τ = ∞. We shall now relax the latter con-
dition, i.e., assume a large but finite τ and extend our
treatment to frequencies ω <

∼ τ−1. In this regime one
must account for the backscattering processes studied in
Refs. [18–21]. Due to the slow rate of these processes,
they do not affect the equilibrium form of the distribu-
tion function (6). As a result the state of the system is
still described by parameters n, T , u0, and uex, but be-
cause of the backscattering processes the two velocities
relax toward each other as

d

dt
(uex − u0) = −

uex − u0

τ
. (12)

It is important to point out that this relaxation does not
affect the expressions (10) for the currents and does not
violate the conservation laws for the number of particles,
energy, and momentum of the system.
In our hydrodynamic description of the one-

dimensional system, the first three of the four equations
(7), and, respectively, (11), express these three conserva-
tion laws and thus remain unchanged. The right-hand
side of Eq. (7d), becomes du0/dt, which is found by ap-
plying conservation of momentum condition dp/dt = 0 to
Eq. (9) and using (12). After that we recover Eq. (11d)
with a simple modification ∂t → ∂t + τ−1.
This modification of the hydrodynamic equations (11)

strongly affects the second sound mode at ω <
∼ τ−1. To

first approximation we take ε/nmv22 → 0 and obtain the
frequency of the second sound in the form

ω =
√

(v2q)2 − (2τ)−2 − i(2τ)−1. (13)

At v2|q| > (2τ)−1 the frequency is reduced, and more im-
portantly, the second sound decays with the rate (2τ)−1.
No wavelike solution exists at v2|q| < (2τ)−1. Heat prop-
agation over long distances is diffusive: ω = −i(v22τ)q

2

at q → 0. As a result, the system has a large, but fi-
nite thermal conductivity κ obtained by multiplying the
diffusion coefficient v22τ by the specific heat ∂ε/∂T ,

κ =
πTv22τ

3~ṽ
. (14)

Alternatively, the thermal conductivity can be obtained
directly from the modified Eq. (11d). Replacing ∂t →
∂t+ τ−1 and considering long time scales gives Eq. (11d)
with ∂t → τ−1. At ε/nmv22 → 0 the gas of excitations
does not affect particle density n and velocity u0, see
Eqs. (11a) and (11c). Assuming n = const and u0 = 0
in Eq. (11d), one finds uex = −v22τ(∂xs)/s. Substituting
this result into the expression jQ = Tsuex for the heat
current, we obtain jQ = −Tv22τ∂xs. Using our earlier
result for the entropy density s = πT/3~ṽ, we obtain
jQ = −κ∂xT with κ given by Eq. (14).
To find the effect of finite backscattering rate on the

first sound, one should solve the set of equations (11) in
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first order in small parameter ε/nmv22 . At small q we
find

ω =

[

vρ +
πT 2∂2

n(n
2ṽ)

12~mnvρṽ2

]

q − i
κT

2mnv2ρ

[

∂n(nṽ)

ṽ

]2

q2.

(15)
This result demonstrates that at ωτ → 0 the first sound
mode becomes the ordinary thermodynamic sound. In
particular, the first term in Eq. (15) contains a correc-
tion to the sound velocity, which simply accounts for the
temperature dependence of the adiabatic compressibility
of the one-dimensional quantum liquid. The second term
is imaginary and thus describes decay of the sound mode.
Indeed, in any medium thermal conductivity gives rise to
absorption of sound. We have verified that the resulting
absorption rate [25] is consistent with the second term in
Eq. (15).

To summarize, we have studied collective excitations of
a system of one-dimensional spin- 12 fermions at low tem-
perature based on a two-fluid hydrodynamic description
of the system. Unlike liquid 4He, there is no superfluid
condensate in our case. The two-fluid nature of the sys-
tem can be understood as follows. We apply Luttinger
liquid theory to small sections of the one-dimensional sys-
tem. The state of each section is described by two sets of
variables: the occupation numbers of the elementary ex-
citations, and the zero-modes N and J . In addition, we
keep in mind that the excitations equilibrate with each
other at the rather short time scale τex, whereas their
equilibration with the zero modes happens at the much
longer scale τ . Thus in the frequency range (1) the sys-
tem consists of two components. The excitations form
a gas, analogous to the normal component of superfluid
4He, whereas the position and time dependent values of
densities of N and J describe a second liquid, similar to
the superfluid component of 4He.

Our main result is that in addition to the well under-
stood acoustic charge and spin excitation modes propa-
gating at velocities vρ and vσ, there is a second sound
mode propagating at velocity v2 given by Eq. (9). This
mode describes the waves of entropy; its decay is small
for frequencies in the range (1). In contrast to superfluid
4He, at ω ≪ τ−1 second sound disappears, and the heat
transport becomes diffusive. Another system where sec-
ond sound exists in a finite frequency range is dielectric
crystal [26, 27].

Our treatment can be applied to other one-dimensional
systems at low temperatures, such as a system of bosons
or spin-polarized fermions. The absence of spin excita-
tions in these systems can be accounted for by taking the
limit vσ → ∞ in our formulas. In this case the veloci-
ties of the first and second sound modes are both equal
to vρ in the limit T → 0. It is worth mentioning that
at vσ → ∞ our expression (14) for thermal conductivity
recovers the result for the spinless one-dimensional sys-
tem obtained in Ref. [28]. Another important example is

that of spin- 12 fermions with attractive interactions. In
this case the energy spectrum of the spin excitations has
a finite gap ∆ at T = 0 [4]. Our two mode description
still applies at ∆ ≪ T . In the opposite limit, ∆ ≫ T , the
spin excitations are frozen out, and the adaptation of the
theory to the spinless case, as described above, should be
made.

The existence of the second sound mode means that
the heat propagation in the one-dimensional system is
ballistic at sufficiently high frequences ω ≫ τ−1, whereas
the usual diffusive heat transport is restored at ω ≪ τ−1.
Experimentally, such frequency dependence of thermal
transport may be observed in long ballistic quantum
wires, such as those obtained by the cleaved-edge over-
growth technique [29, 30]. Time-dependent temperature
difference across the wire can be achieved by driving ac
current through one of the leads, cf. Ref. [31].

A direct observation of both first and second sound
was recently reported in a system of 6Li atoms in elon-
gated trap [32]. In this experiment the system was three-
dimensional, and superfluidity was achieved by tuning
interactions to resonance by magnetic field. In order to
observe the second sound discussed in this paper, one can
replace the trap in Ref. [32] with an array of narrow traps
that are in the one-dimensional regime [33, 34].
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