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We show that the empirical linear relation between the magnitude of the EMC effect in deep
inelastic scattering on nuclei and the short range correlation scaling factor a2 extracted from high-
energy quasi-elastic scattering at x ≥ 1 is a natural consequence of scale separation and derive
the relationship using effective field theory. While the scaling factor a2 is a ratio of nuclear matrix
elements that individually depend on the calculational scheme, we show that the ratio is independent
of this choice. We perform Green’s function Monte Carlo calculations with both chiral and Argonne-
Urbana potentials to verify this and determine the scaling factors for light nuclei. The resulting
values for 3He and 4He are in good agreement with experimental values. We also present results for
9Be and 12C extracted from variational Monte Carlo calculations.

Introduction: Deep Inelastic Scattering (DIS) of lep-
tons on hadrons can be precisely described as high-energy
(perturbative) lepton-quark scattering weighted by the
parton distribution functions (PDFs) that describe the
probability of finding a quark or gluon inside the hadron.
DIS has been used to map out the quark and gluon par-
ton distributions for the proton and subsequently nuclei.
In recent years, these experiments have revealed new and
intriguing glimpses of nuclear structure that we seek to
derive using effective field theory (EFT) methods.

In 1983, the European Muon Collaboration [1] mea-
sured the structure functions FA2 (x,Q2) describing DIS
for iron and deuterium targets, where Bjorken x =
Q2/(2p · q) and Q2 = −q2 are defined in terms of the tar-
get four-momentum p and the momentum transfer from
the lepton to the target, q. The results of these experi-
ments could not be explained by nuclear structure (i.e.,
momentum distribution of nucleons inside the nucleus)
without modifying the nucleon structure [1]. This “EMC
effect” was unexpected since the typical binding energy
per nucleon is so much smaller (<1%) than the nucleon
mass and the energy transfer involved in a DIS process.
The EMC effect has now been mapped out for DIS on
targets ranging from helium to lead (see Refs. [2–6] for re-
views) and similar medium modifications of parton struc-
ture have been investigated in other reactions [5, 7]. The
picture that has emerged is that the ratio

REMC(A, x) =
2FA2 (x,Q2)

AF d2 (x,Q2)
, (1)

with A the atomic number and d the deuteron, can de-
viate from unity by up to 20% over the range 0.05 <
x < 0.7. The ratio has very little dependence on Q2

and so we suppress it. Experimental data also suggest
that for an isoscalar nucleus, the x and A dependence
of REMC − 1 is factorizable. That is, the shape of the
deviation of REMC from unity is independent of A while
the magnitude of the deviation depends only on A [8, 9].

REMC forms a straight line in intermediate x, and one
can express the magnitude of the EMC effect by the slope
dREMC(A, x)/dx for 0.35 ≤ x ≤ 0.7. Since Bjorken x is
defined with respect to the parent nucleon of the struck
parton, it is bounded in the range 0 ≤ x ≤ A.

In recent experiments at Jefferson Lab, it was found
that the ratio of quasi-elastic (QE) scattering cross sec-
tions,

a2(A, x) ≡ 2σA
Aσd

∣∣∣∣
1.5<x<2

, (2)

forms an x-independent plateau with negligible Q2 de-
pendence for targets from 3He to 197Au [10–14]. This fac-
tor a2 is referred to as the short range correlation (SRC)
scaling factor. A remarkable empirical discovery is that
the EMC slope and the SRC scaling factor a2 are linearly
related [15, 16].

In this Letter, we explain this linear relationship us-
ing EFT and compute a2 in light nuclei. We first re-
view the EFT description of the EMC effect of Ref. [17]
which explained the factorization of x and A dependence
of REMC − 1, and then show that the linear relation fol-
lows naturally from this. Factorization also shows that,
up to higher order corrections, a2 is scheme and scale in-
dependent even though it arises from scheme- and scale-
dependent matrix elements in different nuclei. Finally,
the values of a2 for 3He and 4He are computed using
the Green’s function Monte Carlo (GFMC) method with
both chiral and Argonne-Urbana potentials to confirm
the scheme and scale independence and are compared
with data, showing close agreement. Results for 9Be and
12C extracted from variational Monte Carlo (VMC) cal-
culations [18] are also discussed.
EFT Analysis: Chiral EFT is constructed based on

the chiral symmetry of QCD. It has been successfully
applied to many aspects of meson [19], single [20], and
multi-nucleon systems [21]. In particular, chiral EFT has
been applied to PDFs in the meson and single-nucleon
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[22–27] and multi-nucleon sectors [17, 28] as well as to
other light-cone dominated observables [29–33].

The structure functions describing lepton-nucleus DIS,
FA2 (x,Q2), can be expressed in terms of nuclear PDFs
qAi (x,Q) (for simplicity of presentation, we choose the
DIS scheme where the renormalization and factorization
scale are set equal to the hard scale of DIS, µ = µf = Q,
although the results below do not depend on the scheme)
as FA2 (x,Q2) =

∑
iQ

2
ix q

A
i (x,Q), where the sum is over

quarks and anti-quarks of flavor i of charge ±Qi in a nu-
cleus A. In what follows, we focus on the isoscalar PDFs,
qA = qAu +qAd ; in the relevant experiments, nuclear PDFs
are typically “corrected” for isospin asymmetry of the
targets. The dominant (leading-twist) parton distribu-
tions are determined by target matrix elements of bilocal
light-cone operators. Applying the operator product ex-
pansion, the Mellin moments of the parton distributions,

〈xn〉A(Q) =

∫ A

−A
xnqA(x,Q)dx, (3)

are determined by matrix elements of local operators,

〈A; p|Oµ0···µn |A; p〉 = 〈xn〉A(Q) p(µ0 . . . pµn) (4)

with

Oµ0···µn = qγ(µ0iDµ1 · · · iDµn)q, (5)

where (...) indicates that enclosed indices have been sym-

metrized and made traceless and Dµ = (
−→
Dµ −←−Dµ)/2 is

the covariant derivative.
In nuclear matrix elements of these operators, there

are other relevant momentum scales below Q: Λ ∼ 0.5
GeV is the range of validity of the EFT, and P ∼ mπ is
a typical momentum inside the nucleus (mπ is the pion
mass). These scales satisfy Q � Λ � P and the ratio
Λ/Q is the small expansion parameter in the twist ex-
pansion while the ratio ε ∼ P/Λ ∼ 0.2− 0.3 is the small
expansion parameter for the chiral expansion.

In EFT, each of the QCD operators is matched to
hadronic operators at scale Λ [17]

Oµ0...µn → : 〈xn〉NMnv(µ0 · · · vµn)N†N
[
1 + αnN

†N
]
,

+ 〈xn〉ππαi∂(µ0 · · · i∂µn)πα + . . . :, (6)

where the operators enclosed by : : are normal ordered
(with respect to the vacuum state), N (π) is the nucleon
(pion) field, v is the nucleon four velocity and 〈xn〉N(π)

is the nth moment of the isoscalar quark PDF in a free
nucleon (pion). The 〈xn〉N (π) terms are one-body op-
erators acting on a single hadron only, while the αn
terms are two-body operators. Here we have only kept
the SU(4) (spin and isospin) singlet two-body operator

∝
(
N†N

)2
and neglected the SU(4) non-singlet operator

∝ (N†σN)2 − (N†τN)2 which changes sign when inter-
changing the spin (σ) and isospin (τ ) matrices [34]. The

latter operator has an additional O(1/N2
c ) ∼ 0.1 suppres-

sion in its prefactor [35] with Nc the number of colors.
We also replace the nucleon velocity by the nucleus ve-
locity and include the correction i∂/M to higher orders.

The relative importance of the hadronic operators of
Eq. (6) in a nuclear matrix element can be systematically
estimated from the power counting of the EFT, which
assigns a power of the small expansion parameter ε to
each Feynman diagram. In Weinberg’s power counting
scheme [36], the nucleon one-body operator is O(ε−3),
the nucleon two-body operator is O(ε0), while the pion
one-body operator connecting two nucleons is O(εn−1).
Since 〈xn〉π = 0 for even n due to charge conjugation
symmetry, the n = 1 pion operator enters at O(ε0) but
for higher n the contributions either vanish or are higher
order compared with the other operators in Eq. (6).

The same order of importance for these operators is
also found using the alternate power countings of Refs.
[37–39], but with a less suppressed two-body effect com-
pared with the one-body nucleon operator. Other higher
dimensional operators are omitted here because they are
higher order in the power counting [17].

Using nucleon number conservation, 〈A| : N†N : |A〉 =
A, the nuclear matrix element of Eq. (6) for n 6= 1 is

〈xn〉A(Q) = 〈xn〉N (Q)
[
A+αn(Λ, Q)〈A| : (N†N)2 : |A〉Λ

]
,

(7)
where αn is A independent but Λ dependent and is com-
pletely determined by the two-nucleon system. After an
inverse Mellin transform, the isoscalar PDFs satisfy

qA(x,Q)/A ' qN (x,Q) + g2(A,Λ)q̃2(x,Q,Λ), (8)

where

g2(A,Λ) =
1

2A

〈
A| : (N†N)2 : |A

〉
Λ
, (9)

and q̃2(x,Q,Λ) is an unknown function independent of
A.1 This result also holds at the level of the structure
function [17],

FA2 (x,Q2)/A ' FN2 (x,Q2) + g2(A,Λ)f2(x,Q2,Λ). (10)

The second term on the right-hand side of Eq. (10) is
the nuclear modification of the nucleon structure func-
tion FN2 . The shape of distortion, i.e., the x dependence
of f2, which is due to physics above the scale Λ, is A in-
dependent and hence universal among nuclei. The mag-
nitude of distortion, g2, which is due to physics below the
scale Λ, depends only on A and Λ.
Linear EMC-SRC relation in EFT: At smaller Q2,

we can generalize the analysis in the previous section to

1 The exception of n = 1 in Eq. (7) results from the relevant
contribution of the pionic operator in that case. This implies
that factorization is violated only for x = 0 [40].
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all higher twist terms in the operator product expansion.
For a higher twist operator Oµ0...µn , its indexes need not
to be symmetric nor traceless, but the matching is still
similar to Eq.(6). The only difference is that chiral sym-
metry dictates that the pion one-body operator has at
least two derivatives in the chiral limit even if the op-
erator has no index. For example, twist-three operators
G2
αβ and mqqq are matched to (∂π)2 and m2

ππ
2 opera-

tors. Therefore the same power counting result holds to
all orders in the twist expansion and we have

σA/A ' σN + g2(A,Λ)σ2(Λ), (11)

where the E (initial electron energy), x and Q2 depen-
dence of σi is suppressed.

With σN vanishing for x > 1, Eqs. (2) and (11) imply

a2(A, x > 1) ' g2(A,Λ)

g2(2,Λ)
, (12)

for both DIS and QE kinematics yielding a plateau in
a2 as observed experimentally at 1.5 < x < 2. (Fermi
motion, an O(ε) effect in the EFT, extends the contribu-
tion of the single nucleon PDF to x slightly above 1 so
the onset of the plateau is also pushed to larger x.) Since
a2(A, x) is a ratio of physical quantities, it is independent
of the EFT cutoff scale Λ. The EFT analysis also predicts
that the scale dependence of g2(A,Λ) is independent of
A as suggested in [41].

From Eqs. (1) and (10), direct computation shows the
that

dREMC(A, x)

dx
' C(x) [a2(A)− 1] (13)

has a linear relation with a2, with C(x) = g2(2)[f ′2F
N
2 −

f2F
N ′

2 ]/[FN2 + g2(2)f2]2 independent of A and Λ (here,
f ′ = df/dx).
SRC scaling factor: Short-range correlations in light

nuclei have been examined theoretically from several
points of view [18, 42–47]. However, the focus of pre-
vious studies was on the one- or two-body distribution
functions in coordinate or momentum space, which are
scale and scheme dependent [48, 49].

Here we discuss their observable ratio, the SRC scal-
ing factor, Eq. (12). We calculate a2 using the GFMC
method, which is one of the most accurate methods for
solving the many-body Schrödinger equation for nuclei
up to A ≤ 12 [50]. The GFMC method projects out the
lowest-energy state of a given Hamiltonian H from a trial
wave function |ΨT 〉 via the many-body imaginary-time
Green’s function

lim
τ→∞

e−Hτ |ΨT 〉 → |Ψ0〉 , (14)

with τ the imaginary time and |Ψ0〉 the exact many-
body ground state. A limitation of diffusion Monte Carlo
methods is that they require local potentials in practice,
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FIG. 1. Scaled two-body distribution function ρ2,1(A, r)/A
for A = 2, 3, 4 nuclei as a function of relative separation r
for chiral interactions at N2LO with two different cutoffs (left
panel) and for the AV18+UIX potentials (right panel). In
the left panel, the darker (lighter) points are for R0 = 1.0 fm
(R0 = 1.2 fm). A = 2 is solved exactly. For A = 3, 4 the er-
ror bars visible at small r are GFMC statistical uncertainties.
The variation of the short-distance behavior of the distribu-
tions shows clearly their scale and scheme dependence.

while nuclear forces derived from chiral EFT are usually
nonlocal. Recently local chiral EFT interactions have
been derived up to next-to-next-leading order (N2LO)
in Weinberg power counting [51–55]. This enables us to
use the GFMC method with chiral EFT as well as phe-
nomenological interactions to study the scale and scheme
independence of a2.

The function g2(A,Λ) of Eq. (9) can be obtained from
the isoscalar two-body distribution

ρ2,1(A, r) =
1

4πr2

〈
Ψ0

∣∣∣ A∑
i<j

δ(r − |ri − rj |)
∣∣∣Ψ0

〉
, (15)

as a matrix element of a local operator,

g2(A,Λ) = ρ2,1(A, r = 0)/A. (16)

In Eq. (15), ri is the position of the ith nucleon and the
sum runs over all pairs in the nucleus, so that the inte-
gral over ρ2,1(A, r) is normalized to A(A−1)/2. We note
that our EFT approach is not based on the experimen-
tally observed np-pair dominance [57, 58], but instead
on the fact that, of the two S-wave two-nucleon opera-
tors, the SU(4)-symmetric operator, (N†N)2 (counting
all pairs) is dominant over the SU(4)-nonsymmetric op-
erator (suppressed by a factor O(1/N2

c ) ∼ 0.1). Thus,
we include all pairs in Eq. (15). Nevertheless, at short
internucleon separations, we find a predominance of np
pairs over pp pairs by a factor ∼ 5–10 for 4He and 12C. In
our GFMC calculations, the two-body distribution func-
tion is obtained from a mixed estimate; for details see
Ref. [59].

Figure 1 shows the scaled two-body distribution func-
tion ρ2,1(A, r)/A for A = 2, 3, 4 nuclei for chiral two- and
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FIG. 2. Ratio of the two-body distribution functions for 3He (blue) and 4He (red) to the two-body distribution function for
the deuteron, 2ρ2,1(A, r)/Aρ2,1(2, r), as a function of relative separation r. Results are shown for chiral interactions at N2LO
with two different cutoffs (left panel) and for the AV18+UIX potentials (middle panel) calculated using the GFMC method.
In the left panel, the darker (lighter) points are for R0 = 1.0 fm (R0 = 1.2 fm) and the bands represent a combined uncertainty
estimate from the truncation of the chiral expansion added in quadrature to the GFMC statistical uncertainties. The right
panel shows the ratio for 9Be (green) and 12C (black) for AV18+UX obtained from VMC results [56]. These ratios are compared
to the experimental values for a2 from Ref. [16], given by the horizontal lines.

three-nucleon interactions at N2LO as well as for the phe-
nomenological Argonne v18 (AV18) two-nucleon [60] plus
the UIX three-nucleon [61] potentials. The varying be-
havior of the two-body distributions at small separation
r makes clear that g2(A,Λ) depends both on the scheme
and scale, where the latter is especially clear from the cut-
off dependence (R0 = 1.0 fm vs. R0 = 1.2 fm). Analogous
to PDFs, one- and two-body distribution functions de-
pend on the renormalization scheme and scale and hence
are not physical quantities [49]. However, the factoriza-
tion derived in EFT shows the ratio a2 should be scheme
and scale independent.

Using Eqs. (12) and (16), a2 is obtained from the ratio

a2 ' lim
r→0

2 ρ2,1(A, r)

Aρ2,1(2, r)
, (17)

where we calculate the behavior at r = 0 by linearly
extrapolating from the smallest two r values to zero sep-
aration. In EFT, locality only means a shorter distance
than the resolution scale. Hence, we expect one can re-
place r → 0 in Eq. (17) by smearing within r < R (a
scale set by, but not necessarily equal to, R0), and still
get the same a2.

We see indeed this is the case in Fig. 2. The left two
panels show a2 for 3He and 4He calculated using the
GFMC method with the chiral N2LO interactions and for
the phenomenological AV18+UIX potentials. The right
panel shows results extracted from VMC calculations [56]
for the AV18+UX potentials for 9Be and 12C. The red
and blue bands in the left panel represent a combined
uncertainty estimate from the truncation of the chiral
expansion [62] added in quadrature to the GFMC statis-
tical uncertainties. The O(ε2) ∼ 0.1 corrections to the

TABLE I. Results for the SRC scaling factor a2 obtained via
Eq. (17) from GFMC calculations of A = 2, 3, 4 nuclei based
on chiral N2LO interactions (for cutoffs R0 = 1.0 and 1.2 fm)
and the AV18+UIX potentials. The uncertainties quoted for
the N2LO interactions include the uncertainty estimated from
the truncation of the chiral expansion added in quadrature to
the GFMC statistical uncertainties.

N2LO (R0 = 1.0 − 1.2 fm) AV18+UIX Exp. [16]
3H 2.1(2) − 2.3(3) 2.0(4)
3He 2.1(2) − 2.1(3) 2.0(4) 2.13(4)
4He 3.8(7) − 4.2(8) 3.4(3) 3.60(10)

operator are also contained within this conservative un-
certainty estimate. We display the band obtained for the
R0 = 1.0 fm cutoff which encompasses the N2LO calcu-
lations with both cutoffs (R0 = 1.0, 1.2 fm). For each
panel, it is clear that a plateau in the ratio sets in at a
value R depending on the scale and scheme. Moreover,
we observe from Fig. 2 that the r = 0 value is a conserva-
tive estimate for a2 given that the statistical uncertainties
in the calculation of the two-body distributions grow as
we approach zero separation. As is evident from Fig. 2,
the GFMC values for a2 are in very good agreement with
experiment [16] while the preliminary VMC results are
also encouraging. We summarize the extracted SRC scal-
ing factors a2 of the GFMC calculations and the compar-
ison with experiment in Table I.

Summary and outlook: We have shown that the
linear relation between the magnitude of the EMC ef-
fect at intermediate x and the SRC scaling factor a2 is a
natural consequence of scale separation and have derived
this result using EFT. We have also computed a2 for 3He
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and 4He using the GFMC method with both chiral and
Argonne-Urbana potentials to confirm the scheme and
scale independence.

GFMC calculations with chiral interactions for 9Be,
12C and other light nuclei will allow further tests of the
EFT understanding of these phenomena. In the case of
9Be, it would be especially interesting to confirm whether
a2 is determined by local instead of global nuclear density
[63]. It would also be very insightful to complete our
theoretical understanding of the EMC-SRC relation by
computing the C(x) coefficient in Eq. (13) from lattice
QCD calculations of f2(x) from the deuteron [64–66].

The EFT approach to the partonic structure of nuclei
has broader applicability than to the isoscalar structure
that we have discussed above. For the F3(x,Q2) struc-
ture function that is accessible in weak-current DIS, EFT
predicts a relation analogous to Eq. (10) with F2 replaced
by F3, and g2 replaced by an isospin-dependent nuclear
matrix element. The resulting analogue of Eq. (13) is also
expected to hold. The generalization to spin-dependent
parton structure and to generalized parton distributions
[67] is similarly straight forward. EFT could also shed
light on whether a plateau of σA/σ3He for 2 < x < 3 ex-
ists, which is still inconclusive experimentally [10, 14, 68].
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[26] P. Hägler et al. (LHPC Collaboration), Phys. Rev. D 77,
094502 (2008).
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