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Active biological systems reside far from equilibrium, dissipating heat even in their steady state,
thus requiring an extension of conventional equilibrium thermodynamics and statistical mechanics.
In this Letter, we have extended the emerging framework of stochastic thermodynamics to active
matter. In particular, for the active Ornstein-Uhlenbeck model, we have provided consistent defi-
nitions of thermodynamic quantities such as work, energy, heat, entropy, and entropy production
at the level of single, stochastic trajectories and derived related fluctuation relations. We have
developed a generalization of the Clausius inequality, which is valid even in the presence of the
non-Hamiltonian dynamics underlying active matter systems. We have illustrated our results with

explicit numerical studies.

Active matter systems are composed of constitutive
elements that are capable of self-propulsion. Either
through an internal mechanism or by extracting en-
ergy from their environment, these elements exhibit self-
induced motion in the absence of any externally applied
force. Examples include solutions containing single cel-
lular organisms such as bacteria or protozoa, synthetic
colloidal systems, and vibrated monolayers of granular
matter [1-6]. In fact, active matter models have been
used to describe flocking, schooling, and herding behav-
ior in animal movement [7-11]. Active systems are at-
tracting growing interest due to their relevance for un-
derstanding live biological systems and their potential
applications to the design of synthetic colloidal systems
with controllable properties [12-18]. Moreover, they ex-
hibit novel collective properties such as phase separation
in the absence of explicit attractive interactions [19-26],
rectification of random fluctuations [27], and spontaneous
self-organization and pattern formation [28, 29], which
make their study of interest in its own right.

Active matter systems constitute a new class of con-
densed matter systems that are inherently out of equilib-
rium and thereby not describable by the standard, Gibb-
sian framework. While the collective behavior of active
particles has been modeled by hydrodynamic equations
based on conservation and symmetry principles [15], and
individual active particles by various Brownian dynam-
ics [18], a systematic framework for the nonequilibrium
thermodynamics and statistical mechanics of active mat-
ter is still in development. Many of the published studies
so far have focused on utilizing equilibrium thermostatic
notions, often based on approximating active systems by
passive systems [30-39]. In this Letter we propose an
alternative approach based on stochastic thermodynam-
ics [40, 41], which is an emerging framework for the de-
scription of thermodynamics and statistical mechanics of
stochastic systems far from equilibrium. Stochastic ther-
modynamics has enabled us to define thermodynamic
quantities such as energy, work, heat, entropy, and en-

tropy production at the level of individual realizations of
stochastic dynamics. Moreover, one obtains exact ana-
lytical results for the fluctuations of entropy production
in the form of equalities, as opposed to the inequalities of
the second law of thermodynamics. These equalities are
more popularly known as fluctuation relations [42-47].

In this Letter, we choose the active Ornstein-
Uhlenbeck process (AOUP), alternatively called the
Gaussian colored noise model, to illustrate our ap-
proach [48-54]. Like other active matter models, this
model is known to exhibit motility-induced phase sepa-
ration (MIPS) [55]. The AOUP model is different from
many other models of active matter [56, 58, 59] in that
there is no explicit internal drive that forces the sys-
tem out of equilibrium; the active behavior of the system
arises from the nonequilibrium nature of the forces from
the environment. In particular, the damping and fluc-
tuating forces from the environment do not satisfy the
fluctuation-dissipation relation (FDR). This fact makes
it a challenge to develop stochastic thermodynamics for
the AOUP as the usual approaches rely heavily on the
equilibrium nature of the environment. We overcome this
challenge by proposing an exact mathematical mapping
of the AOUP, which is an overdamped Langevin model,
to a passive, underdamped Langevin model with effec-
tive reservoir forces that satisfy the FDR. We derive our
generalizations of both the first and the second laws of
thermodynamics in reference to this mapped system, the
latter giving rise to a modified Clausius inequality. More-
over, we derive both integral and detailed fluctuation re-
lations for entropy production. These in turn allow us to
make exact and verifiable predictions for the behavior of
the original active matter system.

This Letter is inspired in part by a recent study of
the AOUP [49], in which the authors studied entropy
production of the AOUP based on its path-integral rep-
resentation. The entropy production in this context in-
volves the time reversal of a stochastic process with non-
conservative forces, which is still a debated issue [60, 61].



Our work introduces a particular microscopic outlook to
the resolution of this issue through an explicit model of
an effective heat bath. This leads to an expression for
entropy production (Eq. (9)) that is different from that
found in [49]. In particular we find that it is nonzero
and positive even for an AOUP in a simple harmonic po-
tential, whereas the authors in [49] report zero average
entropy production in such cases. The crucial difference
between our treatment and theirs lies in the very defi-
nition of entropy production along a trajectory: In our
definition (Eq. (8)) we consider the time reversal of the
dynamics in addition to the reversal of trajectories, in
accordance with the framework of stochastic thermody-
namics [41, 62]; in [49] the time reversal of the dynamics
had not been considered (see Eq. (9) in [49]). More-
over, we have considered a time-dependent scenario in
which the potential energy of the system may vary with
time — leading to a renormalized potential energy in the
underdamped dynamics, different from the original one
— a case not considered in the earlier study. The fact
that other authors have obtained different results for the
AOUP model [49] cries out for further study to determine
definitively whether the results we present here are con-
sistent with every microscopic system described by the
AUOP.

Consider a suspension of N active colloidal particles
with x; denoting the position of the i-th particle. In
the absence of the medium, the dynamics of the particles
are governed by the possibly time-dependent potential
d(X,t), where X = (x1,X2,...,xy) refers to the config-
uration space of the whole system. There are two forces
from the medium: a damping force, —x;/u for particle
i, and a Gaussian random force, v;/u, the latter having
the following properties [57]:

(via) =0, {esaO)usn(t) = Gigdn 27, (1)

for all i, j, a and b. Here, the angular bracket (. ..) denotes
the noise average (i.e., the average with respect to many
realizations of the random forces v;); v;, denotes the a-th
component of v;; 05, denotes the Kronecker delta func-
tion; 7 is the persistence time of the noise; and D is
the diffusion coefficient. Equation (1) implies, in partic-
ular, that the random forces felt by different particles in
different directions are independent of each other. The
Langevin equation of the i-th particle is given by

Xz’ = —,quL"I) + V; (28,)
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where 7, denotes a Gaussian random noise with the prop-
erties (n;4) = 0 and (1;4(0)n;5()) = 8;;0450(¢) with ()
denoting the Dirac delta distribution.

Because the noise force v;/p has exponential mem-
ory whereas the damping force —x;/p is memoryless, the
model violates the FDR, and we have to conclude that

the medium is out of equilibrium. As pointed out in
[49], in the limit of vanishing persistence time (7 — 0)
the model reduces to an equilibrium model satisfying the
FDR with respect to temperature T = D/(kgu) where
kg is the Boltzmann constant. Motivated by this obser-
vation, we replace D in the following discussion by pkgT.
We also use the notation 8 = 1/kpT.

As remarked in the introduction, in the absence of the
FDR we cannot utilize the framework of stochastic ther-
modynamics as is. In particular, we cannot interpret the
heat given to the medium divided by T to be the change
in entropy of the medium for finite persistence time 7.
Fortunately, it is possible to overcome this challenge due
of a surprising property of the fluctuations of this active
matter system: the overdamped AOUP can be mapped
exactly to an underdamped Langevin process where the
new, effective medium (reservoir) is in equilibrium. The
effective underdamped process is given by (Sec. I in Sup-
plementary Materials)
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where p; is the auxiliary momentum of particle i; m =
T/p is the effective mass; ¥ = & 4+ pum(9/0t)® is an
effective potential; and P = (p1,p2,...,pn) and X =
(Xx1,X2,...,Xy), respectively, refer to the phase-space
momenta and coordinates of the whole system. Also,
we have used V; to denote the gradient with respect to
x; and V = (V1,Va,..., V) to denote the spatial gra-
dient in the phase space of the whole system. The damp-
ing and the noise terms, —p;/um and /2/u0mn;, respec-
tively, satisfy the FDR with respect to temperature T.
In the following we interpret them to be forces from the
effective, equilibrium reservoir. The nonequilibrium na-
ture of this mapped dynamics arise from the momentum-
dependent force F; ,,, = —p (P - V) V,;®. In some sense,
we have decomposed the forces of the nonequilibrium
medium into those of an underlying equilibrium reser-
voir and explicit forces. We now develop the results of
stochastic thermodynamics around this model.

To begin we consider the first law of thermodynamics
— namely, conservation of energy. The total energy of
the system is given by E = (1/2)P?/m + ¥, kinetic plus
potential energy. A trajectory I' over the interval [0, ] is
defined to be the sequence of points I' = {Xg.4, Po.t} =
{X(#),P(¢')]|0 <t < t}. Work done on the system along
any I is given by [63]:

t
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where the first term denotes the thermodynamic work
corresponding to the conservative force, —V;¥, and the
second term denotes the mechanical work done by the



nonconservative force, F; ,,,. Here, the circle (o) denotes
Stratonovich multiplication [65], the necessity of which
follows from the chain rule of derivatives [63, 66]. The
heat given to the reservoir over I' is the amount of work
done against the reservoir forces:

0] = /Ot & i (J: N \/Zm) o p;(;f’), (5)

i=1

Consistency of these definitions can be seen through the
following relation, the first law of thermodynamics for
the current system (Sec. IT in Supplementary Materials):

E(t) — E(0) = W[ — Q™[I (6)

which holds true at the level of individual stochastic tra-
jectories, not just on the average.

We now consider the second law of thermodynam-
ics. Let p(X,P;t) be the phase space probability den-
sity of the system at any time ¢t. If the system is at
(X(t),P(t)) at time ¢, following the developments in
stochastic thermodynamics we can define the stochas-
tic entropy s(t) at time t to be s(t) = —Inp(t) with
p(t) = p(X(t),P(t);t) [46]. The average entropy of the
system H(t) at any time ¢ is given by the average of s(t)
with respect p(X, P;t), which is also the Shannon infor-
mation H(t) = — [dXdP p(X,P;¢)Inp(X,P;t). The
change in entropy of the reservoir over the interval [0, ¢],
on the other hand, is given by the Clausius formula
BQr[T'] because the reservoir is in equilibrium (Eq. (5)).
Unlike the usual second law of thermodynamics for pas-
sive systems, however, the total entropy production over
[0,¢] is not just the sum of the change in the stochas-
tic entropy of the system, As, and the Clausius entropy
change of the medium, Q™ /T. To see this we need to
first define the time reversal of the mapped process in
Eq. (3) (Sec. IIT in Supplementary Materials):
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obtained by keeping the reservoir terms unchanged and
replacing t and P by —t and —P, respectively, in the rest
of the terms. We also need to consider the time reversal of
the phase space trajectory T', given by I'" = {X}.;, Py}
with X*(#') = X(¢t — t') and P*(¢') = —P(t — ¢'). Next,
we need to consider P(T'), the probability of T in pro-
cess (3) and P*(I'"), the probability of the time-reversed
trajectory I'" in the time-reversed process (Eq. (7)). If
there is any explicit time dependence in ¥ and ®, the
time dependence has to be reversed as well in the time-
reversed process. Because entropy production is a mea-
sure of time-reversal symmetry breaking, entropy pro-
duction X[I'] along T is given by

Pl
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Using Egs. (3) and (7), we can derive an explicit path
integral expression (Sec. IV in Supplementary Materials):
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It is easy to prove that the average of ¥(I') is non-
negative as required by the second law of thermodynam-
ics. This follows from the fact that the average of ¥ can
be written as (3)/kg = > P[I']In [P[I']/P*(I')], which
takes the form of a relative entropy with the known prop-
erty that it is never negative [68]. In fact, we can derive
the following expression for the average entropy produc-
tion (Sec.V in Supplementary Materials):

_ (@) P
(B)(t) = ke AH + +1<;Bu/0 dt’ (V2®) > 0. (10)

This is the central result of our paper. It expresses the
second law of thermodynamics as a modified Clausius
inequality. Each quantity in the inequality can be cal-
culated even for the original dynamics as the mapped
system is mathematically equivalent to the AOUP. The
inequality therefore constitutes a prediction for the orig-
inal system.

The difference between the usual Clausius inequality
and our generalization in Eq. (10) is embodied by the
last term kppu fg dJt’ (V2®). Even though this term arises
from the momentum-dependent force F; ,,, it is not the
average work done by F; ,, as can be seen from Eq. (4).
If the reservoir terms are taken out from Eq. (3), due to
F; . the dynamics is still not Hamiltonian and the phase
space volume is not conserved under the dynamics. The
last term in Eq. (10) is the integral of the average phase
space contraction rate due to F; ., (Sec. VI in Supple-
mentary Materials). For deterministic thermostats, this
is interpreted as the entropy production [69-73]. More-
over, recent developments in stochastic thermodynamics
have demonstrated that the usual Clausius inequality has
to be modified in the presence of feedback control [74—
85]. The momentum-dependent force F;,, can be seen
as a spatially inhomogeneous feedback cooling operation.
The last term in Eq. (10) refers to the extra contribution
to entropy production from the feedback controller. To-
wards the end of this Letter we will demonstrate that
it is crucial to include this extra term. In its absence
the inequality may not be satisfied. Mathematically, the
appearance of force-divergence terms in fluctuation re-
lations and consequent inequalities should be expected
whenever the “conjugate” process involves a reversal of
forces [86].

A major contribution from stochastic thermodynamics
is the surprising result that the inequalities of the second
law can be replaced by exact equalities, called the fluc-
tuation relations. These are in a sense more refined ver-
sions of the inequalities because the latter can be derived
by the application of Jensen’s inequality. We can derive
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FIG. 1. Numerical distribution of entropy production ¥ of
a single active particle in a one-dimensional simple harmonic
potential, ® = z?/2. We have used temperature units to set
ks = 1. We see that entropy production can be negative for
individual realizations. However, the average entropy produc-
tion is positive, as shown by the blue, solid vertical line and
the associated numerical value. Moreover, the integral fluctu-
ation relation for entropy production (Eq. (11)) is satisfied.

the following the integral fluctuation relation for entropy
production in our active matter system:

<672/k3> _ ZP[F}G*Z[F]/ICB _ Zpr[rr] — ]_7 (11)

where the second relation follows from the definition of
entropy production (Eq. (8)) and the third relation fol-
lows from the normalization of P*[I'"]. Equation (11) is
our second main result. The modified Clausius inequality
(32) > 0 follows from the application of Jensen’s inequal-
ity to Eq. (11). In fact, there is a more detailed equality
underlying Eq. (11) (Sec. VII in Supplementary Materi-
als):

P(Y =0) = e?/kB Pr(2F = —0), (12)
where P(X = o) denotes the probability density of ¥ = o
in the process described by Eq. (3) and P*(X" = o) de-
notes the same quantity for the reverse process (Eq. (7)).
We have to assume that the initial condition for the re-
verse process is obtained from the final condition of the
first process by reversing the sign of the momenta. Equa-
tion (12) is the detailed fluctuation relation for entropy
production.

There are three qualitatively different fluctuation rela-
tions (both integral and detailed) in stochastic thermo-
dynamics for passive, overdamped dynamics: that of to-
tal entropy production, excess entropy production, and
housekeeping heat. We have already extended the re-
lation for total entropy production to the AOUP. For
the sake of completeness we will address the latter two
cases in the following, starting with the excess entropy
production. Let the steady state distribution of the dy-
namics in Eq. (3) in the absence of any time dependence

4

of ® be ps(X,P; ), where a represents fixed, external
parameters of the system. The excess entropy produc-
tion along any trajectory I' between two nonequilibrium
steady states is given by —Aln pg + fot dt' Z o V z In ps,
with Z(#') = (X(¢'),P(¥)). The first term denotes the
change in stochastic entropy of the system and the second
term the generalized work done against the generalized
(nonequilibrium) force —kpTV z1Inps in units of kgT,
which is also called the excess heat Q™ °* (in units of
kgT). The excess entropy production can also be writ-
ten as — fot dt’ & - V4 Inps. The corresponding integral
fluctuation relation

<efgdt’d~va lnp5> — 1’ (13)

is a consequence of the Markovian nature of the dynamics
as shown in [44]. By applying Jensen’s inequality we get

AHs+ B(Q™ ™) >0, (14)

which can be a stricter bound for AH compared to that
of Eq. (10). Unlike total entropy production, there is
generally no detailed fluctuation relation for excess en-
tropy production because the steady state distribution
ps is generally not time-reversal symmetric, ps(X, —P) #
ps(X,P) [87]. The concept of housekeeping heat for
the current system is ambiguous due to the momentum-
dependent force F; ,,,. It has been recently shown that
such systems have many different notions of housekeep-
ing heat each with its own fluctuation relation and con-
sequent inequality [88]. Given this ambiguity, we reserve
a detailed discussion of the relevant results for a future
study.

We now illustrate our results with a simple case study.
Consider a single active particle in a one-dimensional sim-
ple harmonic potential, ® = 2%/2, where we have set the
spring constant to one. For simplicity, we assume the
other parameters, u, 7, T, and the constant kg, to be
unity as well. In Fig. 1 we have plotted the probabil-
ity distribution of entropy production ¥ over 0.5 units
of time in the steady state of the system. We see that
it is possible to have negative entropy production over
individual trajectories, but the average over sufficiently
many trajectories is always non-negative. In particular,
the average entropy production in the current case turns
out to be (¥) = 0.250 £ 0.005. This is in contrast to
the entropy production formula proposed in [49] which
predicts the entropy production in the current scenario
to be zero. To show the importance of the phase space
contraction term in entropy production, the last term
in Eq. (10), we have also measured the incomplete en-
tropy production ¥’ = As+ Q" /T. In this case we find
(3') = —0.250 £ 0.005. The negativity of the average
implies that the usual Clausius inequality is not satis-
fied even for an AOUP in one dimension with a simple
harmonic potential.

A popular approach to analyzing the AOUP is to use
a perturbative expansion in 7 [34, 49]. In contrast, our
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FIG. 2. Dependence of average steady-state entropy produc-
tion rate (w(7))s on the persistence time 7 for an active par-
ticle in a simple harmonic well. As in the case of Fig. 1, in
the plot we have assumed mobility p and temperature 7' to
be unity and a temperature scale that ensures kg = 1.

results are applicable for all values of 7. In particular,
the expression for entropy production (Eq. 10) is valid
no matter how large the value of 7. To demonstrate
this, we have considered in detail the same example as
above. We have derived an exact analytical expression
for the average steady state entropy production rate,
(W(T))s = limy00(34)s/t, as a function of 7 given by
(w(T))s = 7/(1 + 7). (We have assumed the parameters
k (spring constant), p, and T, and the constant kg to
be unity.) We have tested this formula by numerically
integrating the equation of motion, as demonstrated in
Fig. 2. As expected, we see that (w(7))s is zero for 7 = 0,
because the system is in equilibrium in this case. Some-
what counterintuitively, the (w(7))s approaches a finite
value 1 (more generally pkgT if no special values for u
and T and special temperature unit are considered) as T
tends to infinity. This means that larger 7 does not imply
a larger entropy production rate (farther from equilib-
rium) when 7 becomes large compared to the relaxation
timescale of the system.

While the manuscript was in review we became aware
of Refs. [91, 92] the first one dealing with the dynamics
of harmonically confined beads in an active bath and the
second one dealing with the Clausius relation for active
matter. We have discussed the stochastic thermodynam-
ics of the model in [91] in Sec. VIII of our Supplementary
Materials. This discussion is consistent with that in the
second reference [92].
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