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We utilize a nanoscale magnetic spin-valve structure to demonstrate that current-induced magne-
tization fluctuations at cryogenic temperatures result predominantly from the quantum fluctuations
enhanced by the spin transfer effect. The demonstrated spin transfer due to quantum magnetization
fluctuations is distinguished from the previously established current-induced effects by a non-smooth
piecewise-linear dependence of the fluctuation intensity on current. It can be driven not only by the
directional flows of spin-polarized electrons, but also by their thermal motion and by scattering of
unpolarized electrons. This effect is expected to remain non-negligible even at room temperature,
and entails a ubiquitous inelastic contribution to spin-polarizing properties of magnetic interfaces.

Spin transfer [1–3] – the transfer of angular momen-
tum from spin-polarized electrical current to magnetic
materials – has been extensively researched as an efficient
mechanism for the electronic manipulation of nanomag-
netic systems, advancing our understanding of nanomag-
netism and electronic transport, and enabling the devel-
opment of magnetoelectronic nanodevices [3–15]. This
effect can be understood based on the argument of angu-
lar momentum conservation for spin-polarized electrons,
scattered by a ferromagnet whose magnetization ~M is
not aligned with their polarization. The component of
the electron spin transverse to ~M becomes absorbed, ex-
erting a spin transfer torque (STT) on the magnetiza-
tion. In nanomagnetic devices such as spin valve nanopil-
lars [Fig. 1(a)], STT can enhance thermal fluctuations of
magnetization [Fig. 1(b)], resulting in its reversal [5, 16]
or auto-oscillation [6], which can be utilized in memory,
microwave generation, and spin-wave logic [17, 18].

The approximation for the magnetization as a ther-
mally fluctuating classical vector ~M provides an excel-
lent description for the quasi-uniform magnetization dy-
namics [19]. However, for typical transition-metal ferro-
magnets, the frequencies f of the dynamical magnetiza-
tion modes extend to ∼ 100 THz [19, 20]. The modes
with f > 6 THz are frozen out at room temperature
(f > 70 Ghz at T = 3.4 K), and the effect of STT
on them cannot be described in terms of the enhance-
ment or suppression of thermal fluctuations. Such high-
frequency modes are only now becoming experimentally
accessible [21–24], and their role in spin transfer remains
unexplored.

Here, we introduce a frequency non-selective, magne-
toelectronic approach allowing measurements of the ef-
fects of spin transfer on the magnetization fluctuations,
not limited to quasi-uniform modes. Our central result is
that at low temperatures the current-dependent fluctua-
tions arise predominantly from the quantum fluctuations
enhanced by spin transfer; the quantum contribution re-
mains non-negligible even at room temperature. The ob-
served effect is analogous to the well-studied spontaneous
emission of a photon by a two-level system, also caused
by quantum fluctuations, which occurs even when there
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Figure 1. (Color online). (a) Schematic of the tested spin-
valve nanopillar. Grey: Permalloy (Py) ”free” layer F1 and
”polarizer” F2. Orange: Cu electrodes and spacer N. (b)
Effect of STT on thermal magnetization fluctuations. Top
(bottom): Spin transfer due to scattering of the majority
(minority) electron by the magnetization results in a decrease
(increase) of thermal fluctuations. Vectors show the direction
of the fluctuating magnetization and the magnetic moment of
the scattered electron. (c) Magnetoelectronic hysteresis loop.
(d) Differential resistance vs current, at the labeled fields.
Inset: Critical current Ic for the onset of auto-oscillation vs
field determined from the experimental data (symbols), and
the calculation (curve). All measurements were performed at
3.4 K.

are no photons to stimulate the emission. In the stud-
ied magnetic system, the role of photons is played by
magnons - the quanta of the dynamical magnetization
modes.

We can describe the effects of STT on thermal magne-
tization fluctuations [Fig. 1(b)] in terms of the current-
dependent fluctuation energy, or equivalently the popu-
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lation of magnons [2, 25],

< N (i) >=
N

(i)
0

1− I/I(i)c
(1)

where i enumerates the magnon mode, N
(i)
0 is its equi-

librium population, and I
(i)
c is the critical current for the

onset of the dynamical instability [1–3]. We note that
Eq. (1) is valid only for I < Ic; for I > Ic the magnon
population is determined by the nonlinear dynamical
mechanisms not captured by this Equation. The depen-
dence Eq. (1) has been verified by magneto-optical [25]
and magnetoelectronic techniques [26]. We utilized the
latter to verify the established effects of STT in the spin-
valve nanopillars used in our study. The dependence of
resistance on the magnetic field B for our test structure
is typical for the giant magnetoresistance (GMR) [27] in
magnetic nanopillars, Fig. 1(c). The current-dependent
differential resistance exhibits a peak due to the onset
of the dynamical instability at Ic [5–7], Fig. 1(d). The
dependence Ic(B) agrees with the calculation based on
the spin torque theory [1] using the Kittel formula for the
frequency of auto-oscillation [28], inset in Fig. 1(d).

To introduce our approach to magnetoelectronic mea-
surements of current-dependent magnetization fluctua-
tions, we analyze the relationship between GMR and
magnon population. The dependence of resistance on the
angle θ between the magnetizations of the ”free” layer
F1 and the ”polarizer” F2 [Fig. 1(a)] is R(θ) = R(0) +
∆R sin2(θ/2) ≈ R(0) + ∆Rθ2/4, with magnetoresistance
∆R [29]. The current-induced fluctuations discussed be-
low are dominated by the nonuniform dynamical states.
A quadratic relationship R(θ) ≈ R(0)+C∆Rθ2/4 is also
expected for such states, with the coefficient C of order 1
reflecting the contribution from electron diffusion across
magnetically inhomogeneous regions.

To analyze the relation between θ and magnon pop-
ulation in F1, we note that a magnon in any mode has
spin 1 [20]. Therefore, for a ferromagnet with the total
spin S = MV/2µB , the total magnon population is N =
MV sin2(θ/2)/µB [30]. Here, M is magnetization, and V
is volume. Resistance is therefore proportional to the to-
tal magnon population, R(θ) = R(0) + CNµB∆R/MV .
Thus, the current dependence of resistance reflects the
variations of the total magnon population in the free layer
F1, not limited to quasi-uniform dynamical modes. Here,
we neglect the effects of current on the ”polarizer” F2.
It was thicker and only partially patterned, to allow the
magnons generated due to spin transfer to escape from
the active area.

To determine the effect of spin transfer on the fluctu-
ation intensity in the studied spin-valve nanopillars, we
analyze the differential resistance at subcritical currents,
Fig. 2(a). The current dependence exhibits an unusual
piecewise-linear shape, with the slope larger for I > 0
than for I < 0. The curves are shifted by the field, which

can be explained by the magnon freeze-out, as illustrated
in Fig. 2(b) that shows the field dependence of resistance
at I = 0 together with the calculated field-dependent
thermal magnon population [30]. Since field variation
does not noticeably affect the slopes of the curves in
Fig. 2(a), the observed piecewise-linear dependence can-
not be associated with thermal fluctuations whose inten-
sity is controlled by the field. It cannot be explained by
Joule heating, because the dissipated power, and thus the
resulting resistance increase, is quadratic in current. It
is also inconsistent with the analytical expression Eq. (1)
of spin torque theory. Electronic shot noise exhibits a
similar linear increase of power with bias [31]. However,
shot noise (fluctuating current) can contribute to the dif-
ferential resistance only by inducing magnetization fluc-
tuations, which in the absence of thermal fluctuations is
forbidden by the angular momentum conservation argu-
ment of spin torque theory.

We conclude that a previously unrecognized contribu-
tion to spin transfer, not described as enhancement of
thermal magnetization fluctuations, results in a linear
increase of magnon population with current. To inter-
pret our observations, we note that even if thermal fluc-
tuations are negligible at low temperature, the polariza-
tion of the scattered electrons cannot be perfectly aligned
with the magnetization because of the quantum fluctu-
ations of the latter, leading to electron spin dynamics
driving spin transfer. The proposed quantum effect must
be distinct from STT described by Eq. (1). In particu-
lar, in contrast to thermal fluctuations, quantum fluctu-
ations cannot be suppressed by scattering of the major-
ity electrons, due to the uncertainty principle [Fig. 2(c),
top]. However, they can be enhanced by scattering of the
minority electrons [Fig. 2(c), bottom]. To satisfy angu-
lar momentum conservation, the transverse to the field
component of the magnetization must remain zero. The
resulting substantially non-classical magnetization state
cannot be described by rotation from the initial state,
and therefore the proposed effect is not a torque.

Despite the ongoing work [32–34], there is no estab-
lished quantum theoretical framework for spin transfer.
We can describe the uniform (FMR) mode by the dy-

namical states of a quantum macrospin ~S representing
the magnetization [35]. Its projection Sz on the equilib-

rium direction (opposite to ~B) characterizes the magnon
population N = S−Sz. An electron with spin ~s = (a, b),
where a and b are complex and |a|2 + |b|2 = 1, inter-
acts with the magnetic layer via the exchange interaction
Hex = Jex~s · ~S/S, where Jex is exchange energy. This

results in the precession of both ~S and ~s around the total
angular momentum ~J = ~S+~s conserved by the exchange
Hamiltonian. Following Slonczewski’s argument [1], we
assume that the precession phases are randomized due to
variations among electron trajectories. At N � S, the
change of Sz, and thus the average number < ∆N > of
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Figure 2. (Color online). (a) Differential resistance vs current, at the labeled values of field and T = 3.4 K. Symbols: data, lines:
best linear fits performed separately for I < 0 and I > 0. (b) Differential resistance (symbols, right scale) and the calculated
total magnon population (curve, left scale) vs B at I = 0. (c) Scattering of the majority (top) and the minority (bottom)
electron by magnetization experiencing only quantum fluctuations. Vectors show the direction of the fluctuating magnetization
and the magnetic moment of the scattered electron. (d) Population of magnon mode with frequency ω vs current, in the
classical limit kBT/h̄ω = 200 and in the quantum limit kBT/h̄ω = 0.01, for p = 1. Symbols: classical result based on Eq. (1),
curves: quantum result based on Eq. (3).

magnons generated by the scattered electron is [30, 35],

< ∆N >= − < ∆Sz >≈
|b|2

S
+
|b|2

S
N − |a|

2

S
N. (2)

This equation can be interpreted by analogy to the in-
teraction between a two-level system and the electro-
magnetic field. The two-level system is the spin of the
scattered electron, and the role of photons is played by
magnons. The first term describes spontaneous emission
of magnons, which occurs even in the absence of magnons
at N = 0. The second and third terms describe stim-
ulated emission and absorption, respectively, with the
probability proportional to the number of magnons [2].

In the steady state, the magnon population is de-
termined by the balance between spin transfer driven
by current I, and the dynamical relaxation. Describ-
ing the latter by Landau damping, or equivalently for
small N by the relaxation time approximation ∂N

∂t |rel =

−N−N0

τ [2, 35] with τ = 1/(2αω), where ω is the FMR
mode frequency, we obtain [30]

< N(I) >=
N0 + (|I|/p+ I)/2Ic

1− I/Ic
, (3)

where p = |a|2 − |b|2 describes the current polarization.
The unusual non-analytical form of Eq. (3) originates
from the asymmetry of Eq. (2) with respect to exchange
of a and b describing current reversal. Note that Eq. (3)
does not diverge at p = 0, since Ic = eS/(τξp) ∝ 1/p [30].
Here, ξ is a coefficient of order 1 determined by the trans-
port properties of the free layer.

In the classical limit N0 � 1, the spontaneous contri-
bution in Eq. (2) is negligible, and Eq. (3) reduces to the

STT result Eq. (1) [Fig. 2(d), top]. In the quantum limit
N0 � 1 at T � h̄ω(i)/kB , we obtain a piecewise-linear
dependence [bottom curve in Fig. 2(d)]. The data in
Fig. 2(a) are consistent with the dominant quantum con-
tribution once we account for the imperfect electron spin
polarization, p < 1 in Eq. (3), resulting in spontaneous
magnon generation at both positive and negative cur-
rents. Based on Eq. (3), the ratio between the positive-
and the negative-current slopes in the quantum limit is
(1 + p)/(1 − p), providing a new method for analyzing
spin-polarizing properties of ferromagnets.

We now discuss the significance of the proposed quan-
tum contribution to spin transfer. Since exchange in-
teraction between the electron spin and the magnetiza-
tion underlying spin transfer is local, Eq. (3) with mode-

dependent values N
(i)
0 , I

(i)
c , must be applicable not only

to FMR, but also to the nonuniform modes [36]. The
quasi-uniform modes with frequency f of a few GHz are
degenerately populated at 3.4 K; the contribution of their
quantum fluctuations to spin transfer is negligible. How-
ever, the modes with f > 70 GHz are frozen out. Summa-
tion of Eq. (3) over the magnon spectrum confirmed that
the quantum contribution to the total current-dependent
magnon population is dominant at 3.4 K, consistent with
our interpretation of Fig. 2(a) [30]. We note that for
short-wavelength modes, additional resonant contribu-
tions may arise due to the interplay between magneti-
zation dynamics and orbital electron motion; we leave
their analysis to future studies.

At higher temperatures, the zero-current singularity
becomes rapidly broadened [Fig. 3(a)]. This cannot be
attributed to the increasing role of thermal magnetiza-
tion fluctuations, since the piecewise-linear dependence
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Figure 3. (Color online). (a) Symbols: differential resis-
tance vs current, at the labeled values of temperature and
B = 1 T. Curves: results of fitting with a piecewise-linear de-
pendence convolved with a Gaussian whose width is used as
an adjustable parameter. Inset: temperature dependence of
the Gaussian width extracted from the fitting (symbols), and
∆I = 1.9kBT/eR0 (line). The data are offset for clarity. (b)
Top: at T = 0, the Fermi distribution of scattered electrons
is step-like. Bias current shifts the distribution, driving the
spin transfer. Bottom: at finite T , scattering of thermal elec-
trons and holes occurs even at zero bias, equivalent to bias
distribution of width kBT/e.

is still apparent at larger currents even at 20 K. To
analyze this effect, we fit the data with a piecewise-
linear dependence convolved with a Gaussian. The ex-
tracted broadening closely follows a linear dependence
∆I = (1.9± 0.1)kBT/eR0, where R0 is the resistance at
I = 0 [inset in Fig. 3(a)]. This result is consistent with
the proposed quantum mechanism. Bias current shifts
the electron distribution in the magnetic nanopillar, driv-
ing spin transfer [Fig. 3(b), top]. At finite temperature,
the electron distribution becomes thermally broadened,
resulting in scattering of thermally excited electrons and
holes [Fig. 3(b), bottom] equivalent to a distribution of
width ∆V = kBT/e of the bias voltage applied to F1, fa-
cilitating spin transfer even in the absence of directional
current flow. The observed broadening is consistent with
similar contributions of layers F1 and F2 to R0, such
that ∆V ≈ IR0/2. Thermal broadening is absent for
STT, because the effects of electron and hole scattering
cancel each other.

We now analyze the temperature dependence of spin
transfer. We convolve Eq. (3) with a Gaussian, to ac-
count for thermal effects discussed above, and take a
derivative with respect to current. At I = 0, we obtain

dN (i)

dI
|I=0 =

1

2I
(i)
c

+
N

(i)
0

I
(i)
c

. (4)

The first term on the right, describing the quantum
contribution to the current-dependent magnon popula-
tion, is independent of temperature. The last term de-
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Figure 4. (Color online). (a) The calculated slope dN/dI vs
T , B = 1 T. Vertical dashed line marks the crossover temper-
ature Tx between the quantum and the classical spin transfer
regimes. (b) Symbols: The slope dR/dI of resistance vs cur-
rent at I = 0 and B = 1 T. Line: best linear fit of the data.

scribing STT decreases with decreasing T , and vanishes
at T = 0. We define Tx as the crossover tempera-
ture at which the two contributions become equal. Fig-
ure 4(a) shows the calculated temperature dependence of
dN/dII=0 for the total magnon population at B = 1 T,
obtained by summing Eq. (4) over all the magnon modes.
The increase with temperature associated with STT is
approximately linear, indicating that the classical con-
tribution is dominated by the degenerately populated
modes described by the Rayleigh-Jeans law. Based on
these calculations, Tx = 126 K for the total magnon
population. The measured dR/dI, which is proportional
to dN/dI, increases linearly with temperature, with a
non-zero T = 0 intercept [Fig. 4(b)]. We use linear ex-
trapolation to estimate Tx = 160 K, in a good agree-
ment with calculations. If a single mode were involved
in STT, the value of Tx would characterize its frequency
f0 = ln(3)kBTx/h ≈ 4 THz [see Eq. 4]. This result con-
firms that spin transfer involves high-frequency dynami-
cal modes extending into the THz frequency range.

The presented results have significant implications for
magnetoelectronic effects in a variety of magnetic sys-
tems. Quantum fluctuations can contribute to current-
induced phenomena whenever highly nonuniform dynam-
ical states are involved, for example in reversal via do-
main wall motion [11]. Generally, the quantum magnon
generation decreases the effective magnetization, lower-
ing the reversal barriers. The contribution of quantum
fluctuations to spin transfer in antiferromagnets [37] must
be larger than in ferromagnets, due to higher magnon
frequencies. Quantum fluctuations may contribute to
other phenomena involving interaction between magne-
tization and conduction electrons, including spin pump-
ing [38], spin-orbit [39–41], optically-driven [42–44], and
spin-caloritronic effects [45–49].

We also infer a significant inelastic contribution to
spin-dependent electron transport in ferromagnets due
to quantum electron-magnon scattering. It is presently
believed that currents flowing through ferromagnets be-
come spin-polarized mainly due to spin-anisotropy of
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electron scattering. Meanwhile, according to Eq. (2), an
unpolarized conduction electron scattered by the ferro-
magnet generates a magnon in a given dynamical mode
with probability 1/2S, where S is the total spin of the
ferromagnet; it becomes majority spin-polarized in this
process. The number of modes is of order S [19], and
therefore the total probability for an initially unpolarized
electron to become majority-polarized due to quantum
magnon generation is of order 1. This result shows that
inelastic scattering of electrons by quantum magnetiza-
tion fluctuations provides a non-negligible contribution
to spin-polarizing properties of ferromagnets.

We acknowledge support from the NSF Grants ECCS-
1509794 and DMR-1504449.
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