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We study the shift of the energy levels of electrons on helium surface due to the coupling to the
quantum field of surface vibrations. As in quantum electrodynamics, the coupling is known, and it
is known to lead to an ultraviolet divergence of the level shifts. We show that there are diverging
terms of different nature and use the Bethe-type approach to show that they cancel each other, to
the leading-order. This resolves the long-standing theoretical controversy and explains the existing
experiments. The results allow us to study the temperature dependence of the level shift. The
predictions are in good agreement with the experimental data, with no adjustable parameters.

Electrons above the surface of liquid helium were one
of the first observed two-dimensional electron systems
(2DESs) [1–4]. In this system the conceptual simplicity
is combined with far from trivial behavior, which allows
studying many-body effects in a well-characterized set-
ting. The system displays the highest mobility known
for 2DESs, exceeding 2 × 108 cm2/(V·s) [5] and can be
exquisitely well controlled [6]. The electron-electron in-
teraction is typically strong, so that the electrons can
form a Wigner solid [7, 8] or a strongly correlated liquid
with unusual transport properties [9, 10]. A number of
new many-electron phenomena have been found recently
[11–15].
An advantageous feature of the system is the simple

shape of the confining potential. It is formed by the high
Pauli barrier at the helium surface and the image po-
tential. One then expects the electron energy spectrum
to be well understood. Indeed, already the first experi-
ment on transitions between the subbands of quantized
motion normal to the surface showed a good, albeit im-
perfect agreement with the model [4]. Much work has
been done on improving, sometimes empirically, the form
of the confining potential, cf. [4, 16–19]. On the other
hand, it has been known that the electrons are also cou-
pled to a bosonic field, the capillary waves on the sur-
face of helium (ripplons), and that this coupling affects
the electron energy spectrum [20–24]. The importance
of this effect was demonstrated in explaining the Wigner
crystallization [8, 25] and through cyclotron-resonance
measurements [26].
In terms of the coupling to a bosonic field, electrons on

helium are a condensed-matter analog of systems studied
in quantum electrodynamics (QED). In the both cases
the spectrum of the bosons and the coupling are known
[27], and for electrons on helium the coupling can be con-
trolled. The parallel with QED is further strengthened by
the full quantitative agreement between a large number
of experiments on electron transport and the parameter-
free theory that accounts for the coupling and also for
many-electron effects. This is why the difference between
the theoretical and experimental values of the subband
energy spacing has been a concern. Another significant

concern is the well-established experimentally slow en-
ergy relaxation of strongly excited electrons. So far, it
has been described either phenomenologically or by mod-
ifying the form of the electron-ripplon coupling [28].
A major and largely overlooked problem closely related

to those mentioned above is the ripplon-induced shift of
the energy levels of electron motion normal to the surface.
The lowest-order expression is ultraviolet-divergent. The
divergence is strong, as a high power of the wave num-
ber. Unless one deals with it carefully, the resulting level
shifts become comparable to the “bare” electron binding
energy already for a short-wavelength cutoff approach-
ing twice the interatomic distance. Besides electrons on
helium, a similar problem emerges in the analysis of 2D
electron systems in semiconductor heterostructures and
MOSFETs with short-range correlated interface rough-
ness and a high surface barrier. The approach developed
below can be extended to such systems as well
In this paper we show that, in fact, the level shift due

to the coupling to ripplons is small. The situation is
reminiscent of the Lamb shift in QED. In the spirit of
the Bethe approach to the analysis of the Lamb shift, we
show that, in the electron-ripplon problem, there are two
groups of diverging terms, and the leading ultraviolet-
divergent terms are compensated in the overall level shift.
Interestingly, the remaining correction still displays a
power-law ultraviolet divergence, but with a smaller ex-
ponent. This shows the nontrivial nature of the compen-
sation. Once the account is taken of the natural cutoff at
the interatomic distance, the correction becomes small.
It describes a Lamb-shift type deviation from the energy
spectrum in the absence of the electron-ripplon coupling.
We also study the temperature-dependent shift of the

energy levels. We find a good agreement with the experi-
mental results on the spectra of inter-subband transitions
[29, 30] obtained by studying resonant microwave absorp-
tion in a broad range of temperatures and electron densi-
ties. The theory also explains the long lifetime of the elec-
tron states, which are critical for a potential implementa-
tion of a quantum computer based on electrons on helium
[31–33]. The proposed divergence-compensation mecha-
nism is fairly general for quasi-two-dimensional systems.
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The contributions to the level shift due to the warping
of the helium surface, i.e., to the ripplons, can be sepa-
rated into three parts. One is kinematic and comes from
the electron kinetic energy over a warped surface. The
other is electrostatic and comes from the difference of the
electron potential energies above the plane and a warped
surface. The third comes from the intertia of the surface
waves. The key point of the analysis of these contribu-
tions is that we have to go beyond the standardly used
polaron theory in which the electron system is assumed
to be two-dimensional. It is necessary to take into ac-
count the ripplon-induced mixing of the different states
of motion normal to the surface.
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FIG. 1. (a) Sketch of an electron above warped helium sur-
face. (b) Electron energy ET = ~

2q2T /2m for a thermal rip-
plon wave number qT , ~ωqT = kBT . (c) The relative cor-
rection to the reciprocal electron mass due to the direct kine-
matic two-ripplon coupling for T = 0 as function of the short-
wavelength cutoff qc. (d) Same as in (c), but when only the
thermal contribution is taken into account.

The kinematic level shift is the major one. To see how
it comes about, we choose r = (x, y) and p = (px, py)
as the two-dimensional vectors of motion parallel to the
surface; the coordinate z is normal to the surface, the
electron motion along z is quantized, see Fig. 1 (a). Qual-
itatively, one can think that the nonuniform surface dis-
placement ξ(r) changes the effective width of the poten-
tial well in the z-direction. This changes the kinetic en-
ergy of the confined motion. Since 〈ξ(r)〉 = 0, the change
is quadratic in ξ, and in fact, in ∇ξ, because a uniform
surface displacement does not change the energy. The
energy change is positive, since the kinetic energy scales
as the squared reciprocal confinement length.
On the other hand, the motions parallel and normal

to the surface are mixed by the warping. In the second
order (again, quadratic in ξ), the mixing leads to shifts of
the levels of motion normal to the surface, which are neg-
ative for low-lying levels, as expected from the standard

perturbation theory. It turns out that, taken separately,
both mechanisms display strong ultraviolet divergences
of the energy shift, which partly compensate each other.
The warping-induced change of the electrostatic energy

has linear and quadratic in ξ(r) terms as well. The shift
of the electron energy levels due to the quadratic term
also displays an ultraviolet divergence, but it is weaker
than for the kinematic mechanism. This is because the
image potential is much less sensitive to short-wavelength
fluctuations of the helium surface. The divergence is
partly compensated by the single-ripplon processes, as
for the kinematic coupling. The analysis is similar to
the analysis of the kinematic effect given below and is
provided in the Supplemental Material [34].
Our starting point is the electron Hamiltonian for a

flat helium surface,

H0 = T̂ + V (z), T̂ = (2m)−1(p2 + p2z), (1)

where the potential energy V (z) for z > 0 comes from
the image force and from the electric field E⊥ usually
applied to press the electrons to the surface [27, 28].
The potential has an atomically steep repulsive barrier
at z = 0 with height > 1 eV formed by helium atoms.
The eigenstates of Hamiltonian (1) are products of the
wave functions of quantized motion normal to the sur-
face |n〉 ≡ ψn(z) and the plane waves of lateral motion
∝ exp(ipr/~). The energies of the normal and lateral mo-
tions are En and Ep, the total energy is Enp = En+Ep.
The ripplon Hamiltonian and the ripplon-induced sur-

face displacement are

Ĥr = ~

∑

q

ωqb
†
q
bq, ξ(r) =

∑

q

Qqe
iqr(bq+b

†
−q

). (2)

Here, bq is the annihilation operator of a ripplon with the

wave number q and frequency ωq; Qq = (~q/2ρωqS)
1/2,

where ρ is the helium density and S is the area [35].
The effect of the ripplon-induced curvature of the elec-

tron barrier at the helium surface can be taken into ac-
count in a standard way [36] by making a canonical trans-
formation U = exp[−iξ(r)pz/~], which shifts the elec-
tron z-coordinate so that it is counted off from the local
position of the surface, z → z − ξ(r) [21]. The trans-
formed electron kinetic energy and the ripplon energy

U †(T̂ + Ĥr)U is the sum T̂ + Ĥr + Ĥ
(1)
i + Ĥ

(2)
i , where

Ĥ
(1)
i and Ĥ

(2)
i describe the linear and quadratic in ξ(r)

kinematic electron-ripplon coupling,

Ĥ
(1)
i = − 1

2m
pz{p,∇ξ(r)}+ + i~−1pz[ξ(r), Hr ],

Ĥ
(2)
i = p2zh

(2)
i , h

(2)
i =

1

2m
(∇ξ)2 +

∑

q

ωq|Qq|2/~ (3)

[{A,B}+ = AB +BA,∇ = (∂x, ∂y) ].

The term Ĥ
(2)
i averaged over the thermal distribution

of ripplons gives a correction to the electron energy En

already in the first order,

∆E(2)
n = 〈n|p2z|n〉〈h(2)i 〉. (4)
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This correction is just a renormalization of the elec-
tron mass for motion normal to the surface m−1 →
m−1+

∑

q
|Qq|2

[

2mωq + ~q2(2n̄q + 1)
]

/m~, where n̄q =

[exp(~ωq/kBT ) − 1]−1 is the Planck number. Since

ωq ∝ q3/2 for large q [37], the sum over q diverges as

q
7/2
c for T = 0, where qc is the short-wavelength cutoff.

Figure 1(c) shows the factor 2m〈h(2)i 〉 as function of the
short-wavelength cutoff qc. If we set qc = 1Å−1[38], the

energy shift (4) is ∆E
(2)
n ∼ En, indicating the breakdown

of the perturbation theory.

Operator Ĥ
(1)
i contributes to the level shift in the sec-

ond order. For a state with given quantum numbers n
and p, the shift is

∆E(1)
np =

∑

n′,q

∑

α=±1

Nqα

|〈n|pz|n′〉|2∆2
p,q,α

En − En′ −∆p,q,α
. (5)

Here, α allows for the processes with virtual emission
(α = 1) or absorption (α = −1) of a ripplon, ∆p,q,α =
Ep+~q−Ep+α~ωq is the difference of the energies of the
in-plane motion in the initial and intermediate electron
states with the added or subtracted ripplon energy, and
Nqα = |Qq|2 [n̄q + (1 + α)/2] /~2.
We find the overall kinematic energy shift ∆Ekin

np =

∆E
(1)
np +∆E

(2)
n by re-writing in Eq. (5)

∆p,q,α

En − En′ −∆p,q,α
=

En − En′

En − En′ −∆p,q,α
− 1. (6)

The last term here exactly cancels ∆E
(2)
n in ∆Ekin

np , since
∑

n′ |〈n|pz|n′〉|2 = 〈n|p2z |n〉 and Qq, ωq are independent
of the direction of q. Then

∆Ekin
np =

∑

n′,q,α

Nqα
∆p,q,α|〈n|pz|n′〉|2(En − En′)

En − En′ −∆p,q,α
. (7)

We will be interested in ∆Ekin
np for low-lying out-of-plane

states, n ∼ 1, and for small momenta p . (mkBT )
1/2.

The unperturbed energies En, En′ and the matrix el-
ements 〈n′|pz|n〉 in Eq. (7) can be found from the one-
dimensional Schrödinger equation for an electron above
the flat helium surface. To get an analytic insight we
note that the main contribution to Eq. (7) comes from
large in-plane wave numbers q compared to the recip-
rocal out-of-plane localization length r−1

B in the ground

state n = 1 (rB . 100Å [35, 39]). The energy ∆p,q,α

largely exceeds kBT and |En| with n ∼ 1. Then of
primary importance is the contribution to Eq. (7) of
highly excited states with n′ ≫ 1. Such states are
semiclassical. They correspond to electron motion in
an almost triangular potential well formed by the bar-
rier at z = 0 and the field eE⊥ that presses the elec-
trons against the surface. The WKB approximation gives
En′ ≈ [3π~eE⊥(n

′ − 1/4)/2
√
2m]2/3 for n′ ≫ 1 (a bet-

ter approximation is based on matching the WKB and
the small-z wave functions [33]). Since the large-n′ wave

functions are fast oscillating on length rB , one can show
that |〈n′|pz|n〉|2 ≈ (~4eE⊥/2mE

2
n′)|∂zψn|2z=0.

Changing from summation over n′ in Eq. (7) to inte-
gration, we obtain from the above estimate

∆Ekin
np ≈ ~√

2m
|∂zψn|2z=0

∑

q

|Qq|2(2n̄q + 1)∆
1/2
p,q,1. (8)

We disregarded here the contribution of the states with
energies En′ . En. We also disregarded the ripplon en-
ergy ~ωq compared to the in-plane electron energy E~q.
This is a good approximation, because ripplons are slow,
ωq ≈ (σ/ρ)1/2q3/2, where σ is the helium surface ten-
sion. Therefore their thermal momentum qT given by
condition ~ωqT = kBT corresponds to the electron en-
ergy E~qT varying from ≈ 73 K to ≈ 1.6 × 103 K for T
varying from 0.1 K to 1 K, see Fig. 1(b).
The T = 0-term in Eq. (8) still has an ultraviolet di-

vergence. It scales with the short-wavelength cutoff qc
as q

5/2
c . This is a much weaker divergence than that of

∆E
(2)
n . Overall, the T = 0 term is ∼ ∆E

(2)
n /(qcrB). For

the cutoff qc ∼ 1 Å−1, this term is on the order of a few
percent of the electron binding energy |E1| = ~

2/2mr2B ∼
8 K. Its dependence on the control parameter E⊥ is de-
scribed by Eq. (7). There are also other contributions to
the T = 0-level shift. They include the effect of the elec-
tron correlations [11, 40], the intraband polaronic shift
[22] and, last but not least, the finite steepness and height
of the barrier for electron penetration into the liquid he-
lium [4, 16–19]. It is important that, as it follows from
the previous work and from Eq. (8), all contributions to
the T = 0 level shift are small.
Understanding the experiment requires finding the T -

dependent part of the shift of the electron energy levels.
For T & 10 mK the kinematic contribution (7) is the
dominating part of this shift. From Fig. 1(d), this shift
is small even before the renormalization. However, it is
directly observable. In the approximation (8), the T -
dependent part ∆Ekin

npT of the kinematic level shift is

∆Ekin
npT ≈ Akin

n (kBT )
5/3, (9)

The coefficient Akin
n ≈ ckin|∂zψn|2z=0(~

4ρ/σ4)1/3/m
(ckin = Γ(5/3)ζ(5/3) ≈ 0.1) sensitively depends on the
electron state n. Equation (9) predicts a power-law de-
pendence of the level shift on T with exponent 5/3.
The dependence of the energy renormalization on the

level number n leads to a temperature-dependent shift
of the peaks of microwave absorption due to n → n′

transitions. Since the characteristic ripplon momenta ~q
in Eq. (7) largely exceed the thermal electron momentum,
the level shift is essentially independent of the electron
momentum p.
In Fig 2 we present the results for the thermally-

induced shift ∆ω21 of the transition frequency ω21 =
(E2 − E1)/~. It is calculated as a sum of the kine-
matic contribution (7) and the contribution from the
electrostatic coupling given in SM, keeping only the T -
dependent terms in the both expressions. To compare
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FIG. 2. Temperature dependence of the 1 → 2 transition
frequency calculated for E⊥ = 106 V/cm (solid line). The
squares are the experimental results [30]. In the studied den-
sity range 0.67× 107 − 2.4× 107 cm−2 no dependence on the
electron density was found, and the data for different densities
are combined.

the theory with the experiment, the experimentally mea-
sured transition frequency [30] was extrapolated to T = 0
and the shift was counted off from the extrapolated value.
The calculated T -dependent frequency shift is free from
the ambiguity related to the form of the electron poten-
tial at the atomic distance from the helium surface.
The theoretical curve in Fig. 2 is in excellent agree-

ment with the experimental data shown by squares, with
no adjustable parameters. A deviation is observed only
for T & 1 K, where scattering by helium vapor atoms be-
comes substantial. The simple expression (9) gives ∆ω21

that differs from the numerical result by a factor ∼ 3.
Two-rippon coupling has been attracting much interest

as a mechanism of electron energy relaxation [28, 32, 41–
43]. Its importance is a consequence of the slowness
of ripplons, which makes single-ripplon scattering essen-
tially elastic. In contrast, for two-ripplon scattering, the
total wave number of the participating ripplons |q1+q2|
can be of the order of the reciprocal electron thermal
wavelength or the reciprocal magnetic length, whereas
the wave number of each ripplon q1,2 can be much larger,
so that the ripplon energies ~ωq1 ≈ ~ωq2 can be compa-
rable to kBT , the intersubband energy gap |En − En′ |,
or the Landau level spacing.

From Eq. (3), the matrix element of an electron tran-
sition |n,p〉 → |n′,p′〉 calculated for the direct kinematic

two-ripplon coupling Ĥ
(2)
i is ∝ q1q2 ≈ −q21. It implies a

high rate of deeply inelastic electron relaxation for large
q1,2. The single-electron kinematic coupling to ripplons

Ĥ
(1)
i very strongly reduces the scattering rate. The ap-

proach similar to that used in the analysis of the level
shifts allows one to show that the term ∝ q1q2 drops out
from the transition matrix element calculated to the sec-
ond order in Ĥ

(1)
i . A similar cancellation occurs for the

electrostatic electron-ripplon coupling [33]. This strongly
reduces the energy relaxation rate, bringing it within the
realm of the experiment. The full analysis of the electron
energy relaxation requires also taking into account scat-
tering by phonons in helium [32]. This analysis is beyond
the scope of the present paper.

In conclusion, we have shown that the system of elec-
trons coupled to the quantum field of capillary waves on
the helium surface enables studying a condensed-matter
analog of the Lamb shift, which in this case is the shift
of the subbands of the quantized motion transverse to
the surface. As in the case of the Lamb shift, the ma-
trix elements of the electron coupling to the quantum
field are known, and there are terms in the expression
for the shift that display an ultraviolet divergence. We
have shown that the analysis may not be limited to the
conventional intra-subband processes. We have revealed
the diverging inter-subband terms and used the Bethe
trick from the Lamb shift theory to demonstrate that
different diverging terms cancel each other to the lead-
ing order, making the overall shift small. The considered
system makes it possible to study the dependence of the
level shift on temperature. Our theoretical results are in
excellent agreement with the experimental observations.
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