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The modern semiclassical theory of a Bloch electron in a magnetic field encompasses the orbital
magnetization and geometric phase. Beyond this semiclassical theory lies the quantum description
of field-induced tunneling between semiclassical orbits, known as magnetic breakdown. Here, we
synthesize the modern semiclassical notions with quantum tunneling – into a single Bohr-Sommerfeld
quantization rule that is predictive of magnetic energy levels. This rule is applicable to a host of
topological solids with unremovable geometric phase, that also unavoidably undergo breakdown.
A notion of topological invariants is formulated that nonperturbatively encode tunneling, and is
measurable in the de-Haas-van-Alphen effect. Case studies are discussed for topological metals near
a metal-insulator transition and over-tilted Weyl fermions.

The semiclassical Peierls-Onsager-Lifshitz theory1–4 of
a Bloch electron in a magnetic field has been extended5–7

to incorporate two modern notions: a wavepacket orbit-
ing in quasimomentum (k) space acquires a geometric
Berry phase (φB),8,9 as well as a second phase (φR) origi-
nating from the orbital magnetic moment of a wavepacket
about its center of mass.10,11 Both φB and φR are eval-
uated on semiclassical orbits which are uniquely deter-
mined by Hamilton’s equation. If the quasimomentum
separation between two neighboring orbits is of the or-
der of the inverse magnetic length, field-induced quantum
tunneling (known as magnetic breakdown)7,12–17 invali-
dates a unique semiclassical trajectory.

Can the modern semiclassical notions of geometric
phase and orbital moment be combined with the quan-
tum phenomenon of breakdown? A unified theory would
describe a host of solids which have emerged in the recent
intercourse between band theory and topology. These
solids are characterized by geometric phase which is un-
removable owing to symmetry; the robust intersection of
orbits simultaneously guarantees breakdown.

We propose that the magnetic energy levels in these
solids are determined by Bohr-Sommerfeld quantization
rules that unify tunneling, geometric phase and the
orbital moment – these rules generalize the Onsager-
Lifshitz-Roth quantization rules2,4,6 for transport within
a single band, and provide an algebraic method to calcu-
late Landau-level spectra without recourse18–20 to large-
scale, numerical diagonalization. These rules are also
predictive of de-Haas-van-Alphen21,22 (dHvA) peaks, as
well as of fixed-bias peaks of the differential conductance
in scanning-tunneling microscopy (STM).23,24

While oscillatory patterns in the dHvA21,22 measure-
ment underlie the ‘fermiological’25 construction of Fermi
surfaces,26,27 such oscillations are generically disrupted
by tunneling in low-symmetry solids.28 Here, we demon-
strate how multi-harmonic oscillations may neverthe-
less persist in high-symmetry solids whose orbits inter-
sect at a saddlepoint. Furthermore, the phase offset
of each harmonic is a topological invariant that non-
perturbatively encodes tunneling in magnetotransport,
as well as sharply distinguishes Fermi surfaces with dif-

fering Berry phases.

Our last case study describes tunneling at the intersec-
tion of a hole and electron pocket, as exemplified by an
over-tilted Weyl point;29–33 the corresponding magnetic
energy levels were first studied numerically in Ref. 19.
Here, we present the first Berry-phase-corrected quanti-
zation rule which is valid at any tunneling strength, and
compare our algebraically-derived Landau-level spectra
to their19 numerically-exact spectra.
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FIG. 1. (a) illustrates a region in k⊥-space with significant
tunneling. (b-c) Constant-energy band contours of two dis-
tinct orbits (above the saddlepoint) that merge into one (be-
low). Black arrows indicate the orientation determined by
Hamilton’s equation. (d-e) Plot of θη vs |T |=(1+e-2πµ)-1/2 for
the conventional metal (blue line) and the topological metal
(red). (f-g) Band dispersion of a conventional metal (left),
and a topological metal (right).

Throughout this letter, we orient the field along ~z,
such that orbits are contours of the band dispersion at
fixed energy E and kz. In the k⊥:=(kx, ky)-neighborhood
where two orbits approach each other hyperbolically [il-
lustrated in Fig. 1(a)], tunneling is significant if the
rectangular area (4ab) inscribed between the hyper-
bolic arms is comparable to or smaller than 1/l2, with
l:=(~c/e|B|)1/2 the magnetic length. The orientation
of the approaching orbits, as determined by Hamilton’s
equation ~k̇=−|e|v×B/~c, distinguishes between two
qualitatively distinct types of breakdown: (a) if both
arms carry the same orientation, tunneling occurs be-
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tween contours of the same band. Case (b) for which
both arms are oppositely oriented will be discussed in the
second half of the letter. The former case, known as intra-
band breakdown, occurs wherever band contours change
discontinuously as a function of energy; the nucleus of
this Lifshitz transition is a saddlepoint which disperses
as εk=k2

x/2m1−k2
y/2m2. The vanishing band velocity at

k⊥=0 implies that a hypothetical wavepacket satisfying
Hamilton’s equation never reaches the saddlepoint in fi-
nite time.34 The probability of vertical transmission (be-
tween ↗-incoming and ↖-outgoing trajectories) equals
|T |2:=(1+e-2πµ)-1,35 with µ:=

√
m1m2El

2 geometrically
interpreted as abl2/2, and E measured from the saddle-
point.

The conceptually-simplest realization of intraband
breakdown occurs for two orbits (at E>0) that merge
into a single orbit (at E<0), as illustrated in Fig. 1(b-c).
This merger has at least two topologically-distinct real-
izations: (ai) a conventional metal whose band dispersion
has two nearby maxima [Fig. 1(f)], and (aii) a topological
metal near a metal-insulator transition, where two Weyl
points (touching points between two conically-dispersing
bands)36,37 with opposite chirality are near annihilation
[Fig. 1(g)]. Our comparative study of (ai-aii) illustrates
how their difference in Berry phase manifests in their
Landau levels, which are determined in both cases by
the following quantization rule:

cos
[

Ω1+Ω2

2

∣∣
E,l2

+ ϕ(µ)
]

= |T (µ)| cos
[

Ω1−Ω2

2

∣∣
E,l2

]
. (1)

T :=(1+e-2πµ)-1/2eiϕ is the aforementioned transmission
amplitude, with ϕ= arg[Γ(1/2−iµ)]+µ log |µ|−µ involv-
ing the Gamma function. Ωj :=Ω[oj ] is the semiclassical
phase acquired by a wavepacket in traversing oj , which
is a closed Feynman trajectory illustrated in Fig. 1(b-
c). For E>0, o1 is simply the left orbit in Fig. 1(b); for
E<0, o1 combines the left half of the orbit with a tun-
neling trajectory [dashed line in Fig. 1(c)] through the
semiclassically-forbidden region.

Ω[oj(E), l2] = l2S[oj(E)
]

+ φM + λ
[
oj(E)

]
(2)

includes (i) a dynamical phase proportional to the k⊥-
space area S bounded by oj , with S positive (resp. nega-
tive) for a clockwise-oriented (resp. anticlockwise) orbit.
Here, {S[oj ]} carry the same sign.

The remaining contributions to Ωj are subleading in
powers of |B|: (ii) the Maslov phase (φM) equals π for
trajectories that are deformable to a circle,39 and (iii)
a further correction (λ) encodes the aforementioned ge-
ometric phase and orbital moment, as well as the well-
known Zeeman coupling. Whether the orbital moment
contributes to λ depends on the crystalline symmetries of
the spin-orbit-coupled solid, as well as the field alignment
relative to certain crystallographic axes. First consider a
time-reversal-invariant, non-centrosymmetric metal with
a two-fold rotational axis parallel to the field (~z) – these
symmetries stabilize Weyl points in the rotationally-
invariant two-torus (denoted BT⊥).31 Then, λj :=λ[oj ]

equals the geometric phase (φB), i.e., the line integral
over oj of the Berry one-form8 i

〈
u1k

∣∣∇ku1k

〉
·dk. Here,

eik·ru1k is the Bloch function of the low-energy band in
Fig. 1(f-g); redefining u1k by a k-dependent phase may
add to φB an integer multiple of 2π, but does not af-
fect the quantization condition in Eq. (1). The composi-
tion of time-reversal and two-fold rotation is a symmetry
(denoted T c2z) that makes wavefunctions real at each
k⊥∈BT⊥, hence eiφB∈R,38 with φB=0 and π for the con-
ventional and topological metal respectively. Moreover,
since the z-component of angular momentum flips under
T c2z, both the orbital moment and the spin expectation
value [s(k)] lie parallel to BT⊥, and do not contribute to
λ.41

To observe the orbital moment and Zeeman coupling,
we consider a different class of solids with a mirror sym-
metry (x→−x) that relates the two maxima in (ai) and
the two Weyl points in (aii); this symmetry allows the
orbital moment/s to tilt out of BT⊥ at k⊥ which are
not reflection-invariant. Then λ=φB+φR+φZ ,40 with φR
defined as the line integral42 of the orbital-moment one-
form:41

A · dk = i
∑
l 6=1

〈
u1k

∣∣∇kulk
〉
Πy
l1dkx/2vy + (x↔ y). (3)

Here, Π(k)ln:=i
〈
ulk
∣∣e−ik·r̂[Ĥ0, r̂]eik·r̂

∣∣unk〉/~ are ma-

trix elements of the velocity operator, v:=Π11, Ĥ0

is the single-particle, translation-invariant Hamiltonian,
and r̂ the position operator.

∑
l 6=1

denotes a sum over

all bands excluding u1k.43 Finally, λ is contributed by
the Zeeman phase (φZ), which is the line integral44 of
g0sz(k)|dk|/2m(v2

x+v2
y)1/2, with g0≈2 the free-electron

g-factor, and m the free-electron mass. If the orbital
moment/s tilts toward +~z at a wavevector k⊥∈o1, the
tilt occurs toward −~z in the reflection-mapped wavevec-
tor lying in o2, hence λ1=−λ2 modulo 2π.45

The quantization rule [Eq. (1)] has been derived by
Azbel13 in the Peierls-Onsager approximation,1–3 which
effectively dispenses with the λ-correction to Ω. By ac-
counting for the subleading-in-|B| correction5–7 to the
effective Hamiltonian of a Bloch electron in a magnetic
field, we have derived an improved connection formula47

that patches the semiclassical WKB wavefunction48,49

across the region of strong tunneling. Continuity of
the patched WKB wavefunction imposes the λ-corrected
quantization rule in Eq. (1).

Viewing Eq. (1) at fixed field, the discrete energetic
solutions correspond to Landau levels. Viewed at con-
stant Fermi energy (EF ), the discrete solutions corre-
spond to values of l2 where Landau levels successively
become equal to EF , leading to peaks in a dHvA or fixed-
bias STM measurement; such discrete l2 are henceforth
referred to as dHvA levels. The Landau/dHvA levels
may be intuited in the semiclassical limit: µ→∞, where
T →1, and Eq. (1) simplifies to independent quantiza-
tion rules for two uncoupled orbits oj illustrated in Fig.
1(b): Ωj/2π∈Z. The Landau spectrum splits into two
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sets labelled by j, where adjacent spacings within each
set are locally periodic as Ej,n+1−Ej,n=2π/[l2(∂Sj/∂E)]
with the right-hand-side evaluated at Ej,n, n∈Z and
Sj :=S[oj ]. Analogously, the dHvA levels split into two
sets, where adjacent levels in each set are periodic as
l2j,n+1−l2j,n=2π/Sj(EF ). This (local) periodicity also
characterizes the opposite semiclassical limit µ→−∞,
where both T and ϕ→0, and we obtain a single quanti-
zation rule for the merged orbit o1+o2 illustrated in Fig.
1(c). Let us describe the case of general µ in symmetry
classes where the two orbits are not mutually constrained
(this includes the T c2z class): the two incommensurate
harmonics (Ω1±Ω2)/2 in Eq. (1) competitively produce
a Landau/dHvA spectrum that is not (locally) periodic
but retains a long-ranged correlation; such spectra have
been called quasirandom.28

In contrast, the mirror symmetry in the second class
of solids enforces S[o1]=S[o2]:=S at all energies, and this
demonstrably allows for locally-periodic spectra. The
mirror-symmetric quantization condition is solved by two
sets of Landau/dHvA levels distinguished by an index
η∈±: l2|S(E)|=2πn+φM+θη, with

θη(E, l2) := ϕ(µ) + cos-1
η

(
|T (µ)| cos

(
λ1

) )
, (4)

defined as a phase: θ∼θ+2π, and cos-1
η (·) denotes the

principal value in [0, π] for η=+, and in [−π, 0] for
η=−. For µ→∞, θ±→±λ1 implies symmetrically-split
Landau levels; as µ→−∞, θ±→±π/2 implies that this
symmetric splitting equals π, and both sets of Lan-
dau levels (distinguished by η) may be viewed as a sin-
gle set with an emergent local period 2π/[l2∂(2S)/∂E]
– this corresponds to a combined orbit that is inter-
sected by a reflection-invariant line; S[o1+o2]=2S, and
λ[o1+o2]=0.46 To observe locally-periodic dHvA levels
at EF , it is necessary that θ varies slowly on the scale of
the dHvA period 2π/S(EF ). Indeed, the typical scale
of variation for |T (µ)| and ϕ(µ) is ∆µ∼1, which im-
plies a scale ∆l2∼1/

√
m1m2EF from the definition of µ;

∆l2/(2π/S(EF )) is therefore negligible for small enough
|EF | or large enough S(EF ). Presuming these conditions,
θη is extractable from the phase offset (γη=θη+φM+φLK)
of the η’th harmonic in the dHvA spectrum; the ad-
ditional Lifshitz-Kosevich correction equals π/4 (resp.
−π/4) for a minimal (resp. maximal) orbit in 3D solids.4

Eq. (4) represents one key result for intraband break-
down – that the dHvA phase offset nonlinearly depends
on both the tunneling parameter T , as well as the semi-
classical phase corrections: φR, φB, φZ .

To conclude our discussion of intraband breakdown,
we propose a symmetry class where θ depends on a uni-
versal function of µ, with an additive Berry-phase cor-
rection that is insensitive to symmetric deformations of
the metal. In addition to the mirror symmetry presup-
posed in Eq. (4), we further impose T c2z symmetry so
that eiλ=eiφB=1 (resp. −1) for the conventional (resp.
topological) metal; this is the symmetry class of TaAs,
which has four mirror-related pairs50 of Weyl points in
the rotational-invariant BT⊥.52–54 Eq. (4) thus simplifies

to θη=ϕ(µ)+ cos-1
η |T (µ)|+φB, which are plotted against

|T (µ)| in Fig. 1(d-e), for both topological (red line) and
conventional (blue) metals. As µ is varied over R, θη ro-
bustly covers the interval [π/2, 3π/2] in the former case,
and [−π/2, π/2] in the latter; the exact π offset originates
from the Berry-phase difference. In both cases, θ+=θ−
for µ→∞ implies a two-fold-degeneracy in the Landau
levels, which did not arise in the T c2z-asymmetric case.
We therefore associate the robust covering of a π-interval
(in either case) to a Lifshitz transition in solids with
T c2z and mirror symmetries. This may be viewed in
a unifying analogy with field-free topological insulators,
where the Berry phase covers 2π55–61 (or rational frac-
tions thereof)62,63 as a function of a crystal wavevector.
In comparison, θη includes not just the Berry phase,
but also nonperturbatively encodes tunneling through
its dependence on T . Being robust against symmetry-
preserving deformations of the metal, the π-covering of
θη may be viewed as a topological invariant in quantum
magnetotransport.

ky

o1
(a) (c) (d)

(b) π/2

π/2

-π/2

-π/2

E
ne
rg
y

|B|
0 .005 .01

0

-.04

E

kx

o2

FIG. 2. An over-tilted Weyl point that is not linked by
tunneling to other Weyl points. (a) Band contours at
fixed nonzero energy. (b) Zero-energy band contour of
HII−|t|(1−σ3)k3x:=d1(k⊥)σ1+d3(k⊥)σ3; the d-vector is illus-
trated by blue arrows, with d1 (resp. d3) the vertical (resp.
horizontal) component of each arrow. (c) Band dispersion.
(d) Landau spectrum for the tight-binding model in Ref. 19,
employing their units for energy and |B|.

In case (b), both hyperbolic arms are oppositely
oriented and belong to distinct bands – they touch
at the intersection of hole- and electron-like pockets,
as exemplified by an over-tilted Weyl fermion.29–31,33

This touching point is modelled by the Hamiltonian:
HII(k

⊥)=(u+vσ3)kx+wσ1ky, with |u|>|v| and σj Pauli
matrices. Interband tunneling occurs with the Landau-
Zener probability e-2πµ̄,7 with µ̄=(vEl)2/2|w|(u2−v2)3/2,
and E measured from the degeneracy. This probabil-
ity is unity at E=0; in comparison, |T |2=1/2 at the
saddlepoint.35 In both intra- and interband breakdown,
the respective dimensionless parameters |µ| and µ̄ are ge-
ometrically interpreted as abl2/2; however, a and b are
distinct functions of E and k · p parameters: u, v, w in
HII , and m1,m2 for the saddlepoint.

The simplest scenario19 of two orbits {ōj}2j=1 linked
by interband breakdown describes an over-tilted Weyl
fermion modelled by H(k⊥)=HII−|t|(1−σ3)k

3
x; such

fermions were predicted to arise in WTe2,31 whose sym-
metry class (T c2z) we adopt in the following discussion.51

The corresponding constant-energy band contours are il-
lustrated in Fig. 2(a-c), and the quantization condition
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is

cos
[Ω1̄+Ω2̄

2

∣∣
E,l2

]
= τ(µ̄) cos

[Ω1̄−Ω2̄

2

∣∣
E,l2

+ ϕ̄(µ̄)
]
, (5)

where τeiϕ̄ (with τ :=
√

1−e-2πµ̄) is the amplitude for
intraband transmission between ↘-incoming and ↙-
outgoing trajectories, and ϕ̄=µ̄−µ̄ ln µ̄+arg[Γ(iµ̄)]+π/4.
Ωj̄ is the phase acquired by a wavepacket in traversing the
closed Feynman trajectory ōj in Fig. 2(a). Ωj̄ :=Ω[ōj ] has

the same functional form as Eq. (1), with eiλ=eiφB∈R
owing to T c2z symmetry; eiφB changes discontinuously
across the band-touching point, owing to ō1 encircling
the Dirac point only for positive energies. The opposing
orientations of {ōj} result in {S[ōj ]} carrying different
signs.

Eqs. (5) and (2) is our central result for interband
breakdown, and may be derived from eigen-solution of
the effective Hamiltonian H=(u+vσ3)Kx+wσ1Ky in the
vicinity of the band-touching point, with kinetic quasi-
momentum operators satisfying K×K=i|e|B/c; H is
written in a representation whose basis functions are
magnetic analogs17 of Luttinger-Kohn functions.65 From
H we derive an improved connection formula47 which ex-
tends a previous work17 by including the effect of the
Berry phase; continuity of the connected WKB wave-
function then imposes Eqs. (5) and (2).

Since no crystalline symmetry relates an electron to
a hole pocket, the two harmonics (Ω1̄±Ω2̄)/2 in Eq. (5)
are generically incommensurate, and competitively pro-
duce a quasirandom Landau/dHvA spectrum. There are
two semiclassical limits where a locally-periodic spectrum
emerges: (i) for µ̄�1 (the weak-field limit above or be-
low the Dirac-point energy), the intraband-transmission
amplitude τeiϕ̄→1, and we obtain independent quanti-
zation conditions Ωj̄=2nπ for two uncoupled orbits. (ii)
For µ̄≈0, the interband-tunneling probability approaches
unity, and Eq. (5) is solved approximately by

l2
(
S1̄ + S2̄

)∣∣
E0
n

= 2nπ; Sj̄ := S[ōj ], n ∈ Z. (6)

One subtlety of the limit µ̄→0 is that Ωj̄ is well-
defined only for isolated orbits [cf. Eq. (2)]. At the
Dirac-point energy, the two orbits merge into a figure
of eight illustrated in Fig. 2(b), and the Berry connec-
tion (for a k-derivative in the azimuthal direction) di-
verges at k⊥=0.66 The validity of Eq. (6) at strictly-zero
energy may independently be justified by the following
semiclassical quantization rule: to leading order in |B|,
Eq. (6) may be re-interpreted as a generalization of the
Onsager-Lifshitz rule2,4 to an orbit which is only partially
electron-like.19,20 The field-independent correction to Eq.
(6) comprises φM and φB, which individually vanish; this
contradicts a claim19 that φM=φB=π. That φB vanishes
follows from inspection of Fig. 2(b): by following the
figure-of-eight trajectory, the wavefunction pseudospin
does not wind. φM may be derived from the connection
formulae of turning points where the WKB wavefunction
is invalid.48 The connection phase at each point is ±π/2,
with ± determined by the orientation of a wavepacket as

it rounds the point.47 φM=0 follows from the vanishing
of the net connection phase [green dots in Fig. 2(b)].

Let us perturbatively treat quasirandom Lan-
dau/dHvA spectra in parameter regimes where a single
harmonic is dominant. For µ̄≈0, the dominant harmonic
is associated to the semiclassical fan: {E0

n(B)}n∈Z [cf. Eq.
(6)]; to leading order in τ , the tunneling correction to the
fan oscillates with the frequency of the weaker harmonic:

δE1
n = 2(-1)n+1sign[E] τ(µ̄)

l2(S1̄+S2̄)′ sin
[ l2(S1̄−S2̄)

2 + ϕ̄
]
, (7)

with the right-hand side evaluated at E0
n, and

O′:=∂O/∂E. The tunneling correction to E0
0 (where the

zero-field electron and hole pockets are perfectly compen-
sated) is linear in E0

0 and grows as |B|1/2 to lowest order
in |B|. As |E|→0, there is a logarithmic divergence in
the second-order derivatives (wrt. E) of the classical ac-
tion function [l2(S1̄−S2̄)]; in Eq. (7), this non-analyticity
is cancelled by a logarithmic divergence in the tunneling
phase ϕ̄. While the Berry phase did not affect the semi-
classical fan of Eq. (6), it shifts the phase of the tunneling
correction (δE1

n) by π/2; this has already been accounted
for in Eq. (7). The validity of Eq. (7) relies on τ and ϕ̄ be-
ing small and slowly varying on the scale of δE1

n. Indeed,
the typical scale of variation for τ and ϕ̄ is ∆µ̄∼1, which
implies an scale ∆E∼

√
w(u2 − v2)3/4/(vl). For typical

values of u and v, δE1
n/∆E vanishes for small enough

field or |E0
n|.

Our perturbation theory [Eqs. (6),(7)] is tested against
the numerically-exact Landau levels of an over-tilted
Weyl point modelled in Ref. 19. Inserting their tight-
binding parameters (detailed in the Supplementary In-
formation) into Eqs. (6)-(7), we plot in Fig. 2(d) the
semiclassical fan [dashed lines] and the quantum correc-
tion [solid], which compares favorably with Fig. 2 in Ref.
19.

Discussion We have presented generalized quantization
rules that incorporate both tunneling and the geometric
phase. Due to the intrinsic phase ambiguity in the wave-
function of wavepackets that approach/leave a tunneling
region, we broadly argue that the geometric phase should
manifest in any tunneling phenomena. This phase is es-
pecially relevant if tunneling occurs within a subspace of
states (bands, in our context) nontrivially embedded in
a larger Hilbert space; this has been overlooked in con-
ventional treatments13,17,67 of tunneling by connection
formulae.

The modern prototype of a nontrivially-embedded
band is one that disperses conically near a band-touching
(Dirac-Weyl) point. We have exemplified how the unre-
movable geometric phase of a Dirac-Weyl point influences
the quantization rules for both intra- [cf. Eqs. (1),(2)]
and interband [cf. Eqs. (5),(2)] breakdown; consequences
have been discussed for the spectra of Landau levels and
dHvA peaks.
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