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We calculate the collective excitations of a dipolar Bose-Einstein condensate in the regime where it self-binds
into droplets stabilized by quantum fluctuations. We show that the filament-shaped droplets act as a quasi-one-
dimensional waveguide along which low angular momentum phonons propagate. The evaporation (unbinding)
threshold occurring as the atom numberN is reduced to the critical valueNc is associated with a monopole-like
excitation going soft as ε0∼ (N −Nc)1/4. Considering the system in the presence of a trapping potential, we
quantify the crossover from a trap-bound condensate to a self-bound droplet.

Dipolar condensates consist of atoms with appreciable
magnetic dipole moments that interact with a long-ranged
and anisotropic dipole-dipole interaction (DDI). Recent ex-
periments with dipolar condensates of dysprosium [1–3] and
erbium [4] atoms have observed the formation of self-bound
droplets that can preserve their form, even in the absence of
any external confinement. These droplets occur in the dipole-
dominated regime, where the DDIs dominate over short-
ranged (s-wave) interactions, and for sufficiently many atoms
in the droplet [5, 6]. In the dipole-dominated regime mean-
field theory predicts that the condensate is unstable to col-
lapse, but as collapse begins and the density increases the
(beyond meanfield) quantum fluctuation corrections become
important. These Lee-Huang-Yang (LHY) [7] corrections [8–
10] contribute an energy that can arrest the collapse and stabi-
lize the system as a finite sized droplet [11–13]. Experiments
have produced droplets by ramping a trapped condensate into
the dipole dominated regime leading to a single droplet or
an array of droplets forming, depending on trap geometry
[12–14]. Droplets with atom numbers in the range 103–104

have been observed, with peak densities predicted to be an
order of magnitude higher than the initial condensate density
(> 1021m−3). The droplets are still well within the dilute
weakly interacting regime, but three-body recombination be-
comes an important source of atom loss that limits droplet
lifetime. Lifetimes of up to ∼ 100 ms were measured for
free-space droplets [3], with longer times observed for trapped
droplets (e.g. [1]). The anisotropic DDI causes droplets to
elongate along the direction that the dipoles are polarized into
highly anisotropic filaments.

It is desirable to have a comprehensive understanding of
the full excitation spectrum of the droplets. Indeed, in he-
lium nanodroplets [15], which are dense self-bound super-
fluid droplets, the various types of bulk and surface excitations
have been extensively studied for decades (e.g. see [16, 17]).
Already some first steps have been made in dipolar droplets,
with Wächtler et al. using a variational ansatz to characterize
three shape oscillations [6], with their prediction for the fre-
quency of the axial mode comparing favorably to experiments
with erbium [4]. Here we present the results of the first cal-
culations of the full excitation spectrum of a dipolar conden-
sate in the self-binding regime by solving the Bogoliubov-de

Gennes equations. We study the modes bound by the elon-
gated droplet in free-space and the nature of instability as the
droplet number decreases towards the critical number. Also,
by including a trapping potential we quantify the evolution of
the spectrum from a trap-bound condensate into a self-bound
droplet.

Formalism– Several works [2–6, 11–13, 18–22] have estab-
lished that the ground states and dynamics of a dipolar con-
densate in the droplet regime is well-described by a gener-
alized nonlocal Gross-Pitaevskii equation (GPE). The time-
independent version for the ground state wavefunction ψ0 has
the form µψ0 = LGPψ0, where µ is the chemical potential
and

LGP ≡ −
~2∇2

2M
+ Φ(x) + γQF|ψ0|3. (1)

The effective potential Φ(x) =
∫
dx′ U(x−x′)|ψ0(x′)|2 de-

scribes the two-body interactions where

U(r) = gsδ(r) +
3gdd
4πr3

(1− 3 cos2 θ). (2)

Here gs = 4πas~2/M is the s-wave coupling constant, as
is the s-wave scattering length, and gdd = 4πadd~2/M is the
DDI coupling constant, with add = Mµ0µ

2/12π~2 the dipole
length determined by the magnetic moment µm of the parti-
cles. The DDI term is for dipoles polarized along the z axis,
and θ is the angle between r and the z axis. The leading-order
LHY correction to the chemical potential is ∆µ = γQFn

3/2,
which is included in Eq. (1) using the local density approxima-

tion n→|ψ0(x)|2, with coefficient γQF = 32
3 gs

√
a3s
π (1+ 3

2ε
2
dd)

[8, 13] where εdd ≡ add/as [23].
The collective excitations of this system are Bogoliubov

quasiparticles, which can be obtained by linearizing the time-
dependent GPE i~ψ̇ = LGPψ about the ground state as

ψ=e−iµt/~
[
ψ0+

∑

ν

(
λνuνe

−iενt/~ − λ∗νv∗νeiενt/~
)]
, (3)

(e.g. see [24, 25]), where λν is the perturbation amplitude.
The quasiparticle modes uν , vν and energies εν satisfy the
Bogoliubov-de Gennes (BdG) equations
(
LGP − µ+X −X

X −(LGP − µ+X)

)(
uν
vν

)
= εν

(
uν
vν

)
, (4)
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where X is the exchange operator given by

Xf ≡ ψ0

∫
dx′U(x−x′)f(x′)ψ∗0(x′)+ 3

2γQF|ψ0|3f. (5)

We normalize the quasiparticles according to
∫
dx(|uν |2 −

|vν |2) = 1. Solving the GPE for ψ0 and BdG equations for
the excitations has to be done numerically. We utilize the
cylindrically symmetry of the problem (e.g. see [25, 26]) to
solve independently for excitations in different m-subspaces,
where m is the z-projection of angular momentum and em-
ploy a cylindrical cutoff for the DDI [27].
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FIG. 1. (a) Spectrum of a self-bound droplet of 164Dy atoms with
as = 80 a0 in free-space as a function ofN . The total droplet energy
E0 =

∫
dxψ∗0(− ~2∇2

2M
+ 1

2
Φ+ 2

5
γQF|ψ0|3)ψ0 (dashed black line) and

−µ (solid black line) are shown. A straight dash-dotted line fit shows
that the lowest energy mode scales as (N −Nc)1/4 asN approaches
the critical number Nc ≈ 1899. Excitations are m = 0 (blue), m =
1 (red) and m = 2 (green). Variational solution [with Nc = 2193]
for the lowest mode (magenta). (b) Widths σρ, σz , and effective
volume σ2

ρσz (solid) as a function of N and the corresponding large
N scaling (dashed). (c) Peak density as a function of N .

Self-bound droplets– A universal phase diagram showing
the conditions where self-bound solutions of the GPE exist
was presented in Fig. 2 of Ref. [5]. This phase diagram only

depends on the parameters εdd and N , and shows that in the
dipole dominated regime (εdd > 1) there always exists a
minimum critical number Nc above which a stable droplet
exists. As εdd increases the critical number Nc decreases.
Fig. 1(a) shows the excitation spectrum as N varies for self-
bound droplet of 164Dy with as = 80 a0 (i.e. εdd ≈ 1.63).
For this value of εdd the critical atom number is Nc ' 1899.
In solving for the excitations we find that they can be cate-
gorised into two types. (i) Those with εν < −µ are bound by
the droplet (noting that quasiparticle energies are relative to
µ, so these excitations have negative energy). (ii) Those with
εν > −µ are hence unbounded (part of the continuum) and
are sensitive to the details of the finite numerical grid used
in the calculations. We only show the bound excitations in
Fig. 1(a) and indicate −µ for reference. Our results show that
the number of these bound excitations increases with N . As
N is reduced towards Nc (where only a few of excitations re-
main) the lowest m = 0 mode goes soft indicating the onset
of a dynamical instability of the self-bound state. This mode
softens as ε0 ∼ (N − Nc)

1/4 [see Fig. 1(a)], similar to the
behaviour predicted at the instability point of attractive con-
densates [28] and droplets in binary condensates [29].

We also observe that the energy of the lowest quasiparti-
cle initially increases with N until it reaches a maximum at
N ≈ 4 × 103. This mode has a monopole (compressional)
character forN . 4×103, and its softening indicates increas-
ing system compressibility as N → Nc. For N & 4 × 103

this mode exhibits a quadrupolar character, consistent with the
system becoming incompressible (e.g. see [30]). For compar-
ison we show the energy of this mode obtained by a variational
Gaussian treatment [6, 31], which we find to be a good de-
scription of the full numerical result. We note the variational
theory predicts a 15% higher value for Nc.

The droplet compressibility is also revealed directly from
condensate properties. In Figs. 1(b)-(c) we show the peak
density npeak, the widths [32] {σρ, σz}, and the effective vol-
ume σ2

ρσz of the condensate as N varies. For N . 4 × 103

(compressible regime) the widths and effective volume de-
crease with increasing N and the peak density increases. For
N & 4 × 103 the system behaves like an incompressible liq-
uid: the peak density npeak remains constant, and the widths
scale so the volume changes linearly with N .

In the incompressible region there are many bound modes
that form a ladder of regularly spaced excitations [see
Fig. 1(a)]. The lowest energy mode, that we discussed above,
is the first of the ladder of m = 0 excitations. At a higher en-
ergy a ladder of m = 1 excitations begins, and so on (higher
m-ladders) until the −µ threshold is crossed. These modes
tend to be confined to the region of space occupied by the con-
densate. Noting that in the incompressible regime the conden-
sate has the shape of a long filament [σz � σρ, see Fig. 1(b)],
the ladder of modes corresponds to a sequence of harmonics
along the z-extent of the condensate as shown for the lowest
three modes in Fig. 2(b). We see that the uν and vν quasi-
particle amplitudes are essentially identical within the central
region of the condensate where the density is saturated. The
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density fluctuation associated with a quasiparticle is given by
δnν ∼ (uν − vν)ψ0, and thus vanishes inside the conden-
sate [see Fig. 2(c)], consistent with the incompressible char-
acter of this regime (c.f. [25, 33, 34]). These results also show
these excitations mainly perturbing the density in the surface
region. The “centrifugal potential” for higher m excitations
shifts their ladders to higher energy. However as N increases
the filament width grows as N1/4 [see Fig. 1(b)] and higher
m-ladders are increasingly bound within the droplet.

We can also quantify the character of the bound modes by
assigning a wavevector to each quasiparticle to compute a dis-
crete dispersion relation. We set zν as the first solution of
uν(0, z) = 0 for z > 0 and define the wavevector kz = π/2zν
(kz = π/zν) for even (odd) modes [see Fig. 2(b)]. The results
of this analysis are shown in Fig. 2(a), where the different lad-
ders of m-excitations are clearly seen.

The m = 0 discrete dispersion relation is well described by
the quasi-one-dimensional (quasi-1D) result found by assum-
ing a Gaussian radial profile of the condensate and excitations
with width σρ

ε(kz)=

√
ε2z + 2εznpeak

[
gs
2
− gdd

2
f

(
kzσρ√

2

)
+

3

5
γQFn

1/2
peak

]
,

(6)

where εz = ~2k2z/2M and f(q) = 1 + 3q2eq
2

Ei(−q2) is the
quasi-1D DDI [35], with Ei being the exponential integral.
The dispersion relation (6) only requires σρ and npeak from
the GPE solution and has no other fitting parameters. There
is no apparent linear (phonon) dispersion for the m = 0 re-
sults in Fig. 2(a). However, the kinetic energy of these modes
is also negligible (the free-particle dispersion εz is shown for
reference), and ε(kz) still accurately fits the m = 0 modes if
we neglect the ε2z term. Thus interaction effects (including the
LHY term) dominate the energetics of these modes, with the
curvature in the dispersion relation arising from the momen-
tum dependence of the DDI, described by f . The variation
of f with kz is set by the radial width σρ, and we see that
f changes rapidly over the kz range spanned by the bound
modes [see Fig. 2(a)]. The dispersion relation (6) also has
some similarities to that of a dilute bilayer system of polar
molecules with a three-body interaction [36].

We have calculated spectra for free-space droplets over a
wide parameter regime (as/a0 ∈ {70, 80, 90, 100} and N ∈
{Nc, . . . , 2× 105}) and find the general spectrum behavior to
be qualitatively similar to the results of this section.

Transition to self-bound droplets in a trap– Dipolar con-
densates are typically prepared by cooling the atoms through
the condensation transition in an external trap with εdd < 1.
In this regime the role of quantum fluctuations is unimpor-
tant and the condensate profile is determined by a balance
between the repulsive two-body interactions and the trapping
potential (i.e. exhibits a Thomas-Fermi density profile [37]).
From this point a Feshbach resonance is used to reduce as
(i.e. increase εdd) to bring the system into the dipole domi-
nated regime where droplets can form (e.g. see [1–4]). It is
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FIG. 2. (a) Discrete dispersion relation for a self-bound droplet of
N = 105 164Dy atoms with as = 80 a0 in free-space. Also shown
are −µ (solid black line), εz (dashed), ε(kz) from Eq. (6) (dash-
dotted) and f with an arbitrary scale (red line). Excitations (crosses)
are mapped using kz (see text). (b) Lowest three m = 0 quasipar-
ticles umj (solid blue) vmj (dashed blue) modes, and (c) associated
density fluctuations δnmj (see text). The quasiparticle results in (b)
and (c) are vertically offset for clarity, and the condensate amplitude
ψ0 is shown for reference (black).

interesting to explore the nature of the excitation spectrum as
the condensate undergoes the transition from being bound by
the trapping potential to being self-bound as a droplet. Trap
geometry can play a significant role in the stability properties
and excitations of a dipolar condensate (e.g. see [25, 26, 38–
40]), however here we focus on the case of a spherically sym-
metric trap where the condensate smoothly crosses over into a
droplet as εdd increases. Our solutions for the condensate and
excitations are found using the procedure outlined earlier with
the potential Vtrap = 1

2Mω2|x|2 added to LGP.
Our results for a system of 2× 104 164Dy atoms are shown

in Fig. 3. For as & 95a0 the condensate is in a low den-
sity trap bound state and has a dense excitation spectrum. As
as decreases below 95a0 the condensate energy rapidly de-
creases into negative values as the droplet self-binds. As this
happens most of the quasiparticle energies start rapidly ris-
ing into a quasi-continuum of excitations that are bound by
the trap but not within the droplet. A few m = 0 modes
and a single m = 1 mode are seen to “peel off” from these
rapidly rising modes and become bound excitations within the
droplet, similar to those shown in Fig. 1 [the spectrum here at
as = 80a0 is similar to that of the free-droplet in Fig. 1(a) at
N = 2 × 104]. We also indicate −µ, but note it is only an
approximate estimate of the energy scale for self-bound exci-
tations in the trapped system. Since the quasiparticle energies
are measured relative to µ, it is useful to consider εν + µ (not
shown), which shows that the rapidly rising states are instead
approximately constant in energy relative to the confinement
potential, while the bound state energies rapidly become neg-
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FIG. 3. (a) Spectrum of 2 × 104 164Dy atoms in a spherical trap
with ω = 2π × 70 s−1 showing modes up to m = 5. The conden-
sate energy (thick black dashed line) and −µ (heavy black line) are
shown. The three oscillation modes predicted by variational theory
(thin dashed lines). The Kohn modes at εν = ~ω (note m = 1 mode
obscures the m = 0 mode). (b) Widths σρ, σz , and effective volume
σ2
ρσz (solid) as a function of as. (c) Peak density as a function of as.

ative as the droplet forms.
We also give measures of the condensate size and peak den-

sity for reference in Figs. 3(b) and (c). This shows that as as
decreases over the range of values shown, the radial width of
the condensate reduces by about an order of magnitude while
the axial length slightly increases (it is being constrained by
the trap), thus becoming an elongated droplet. Also the peak
density increases by more than an order of magnitude.

Because of the harmonic trap the system has Kohn modes,
corresponding to center-of-mass oscillations at the trap fre-
quency [41], which are degenerate for our case of a spherically
symmetric trap. As the trap frequency is reduced to zero these
Kohn modes vanish reflecting the translational symmetry of
the free droplet.

The parameters of Fig. 3 match those in Fig. 7 of Ref. [6],
where the variational approximation of the shape oscillation
modes was developed. Those three modes are reproduced in

Fig. 3(a) for reference. We see that two of the variational
modes are low lying excitations in the trap bound regime
(as & 95a0). These modes cross as the system transitions into
the droplet, and only one (with monopole/quadrupole charac-
ter discussed in the free droplet section) remains a low energy
mode. The third shape mode lies in the dense spectrum of
excitations on both sides of the crossover.

Conclusions and outlook– In this paper we have presented
the first calculations for the full excitation spectrum of a self-
bound dipolar droplet. We find that as N increases the droplet
crosses over from being compressible to behaving like an in-
compressible liquid, revealed by the frequency and charac-
ter of the lowest energy excitation. We also observe that low
angular momentum quasiparticles are bound within the elon-
gated droplet and propagate as axial phonon modes. While we
present figures for 164Dy, all results are also valid for other
atoms with simple scaling. The s-wave scattering lengths
must be scaled by add and frequencies must be scaled by
Ma2dd. E.g., for 166Er the vertical axis of Figs. 1(a), 2(a) and
3(a) must be multiplied by 3.9 and the horizontal axis of Fig. 3
must be multiplied by 0.5. The case as = 80a0 considered in
Figs. 1 and 2 corresponds to 40a0 for 166Er.

In experiments the excitations have been excited by modi-
fying the trap (or an external field) [4] (also see [42]). Such
an approach will not effectively couple to the many spatially
varying modes we have discussed here, and new techniques
will be needed to explored to measure these, such as Bragg
spectroscopy (e.g. see [26, 43, 44]) or extensions of this ap-
proach utilizing in situ imaging [45].

DB and PBB acknowledge the contribution of NZ eScience
Infrastructure (NeSI) high-performance computing facilities,
and support from the Marsden Fund of the Royal Society of
New Zealand. RMW acknowledges partial support from the
National Science Foundation under Grant No. PHY-1516421.

[1] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-
Barbut, and T. Pfau, Nature 530, 194 (2016).

[2] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and
T. Pfau, Phys. Rev. Lett. 116, 215301 (2016).

[3] M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut, and
T. Pfau, Nature 539, 259 (2016).

[4] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. San-
tos, and F. Ferlaino, Phys. Rev. X 6, 041039 (2016).

[5] D. Baillie, R. M. Wilson, R. N. Bisset, and P. B. Blakie, Phys.
Rev. A 94, 021602(R) (2016).

[6] F. Wächtler and L. Santos, Phys. Rev. A 94, 043618 (2016).
[7] T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135

(1957).
[8] A. R. P. Lima and A. Pelster, Phys. Rev. A 84, 041604 (2011).
[9] A. R. P. Lima and A. Pelster, Phys. Rev. A 86, 063609 (2012).

[10] R. Schützhold, M. Uhlmann, Y. Xu, and U. R. Fischer, Int. J.
Mod. Phys. B 20, 3555 (2006).

[11] H. Saito, J. Phys. Soc. Jpn 85, 053001 (2016).
[12] F. Wächtler and L. Santos, Phys. Rev. A 93, 061603 (2016).
[13] R. N. Bisset, R. M. Wilson, D. Baillie, and P. B. Blakie, Phys.

Rev. A 94, 033619 (2016).

http://dx.doi.org/10.1038/nature16485
http://dx.doi.org/10.1103/PhysRevLett.116.215301
http://dx.doi.org/10.1038/nature20126
http://dx.doi.org/10.1103/PhysRevX.6.041039
http://dx.doi.org/10.1103/PhysRevA.94.021602
http://dx.doi.org/10.1103/PhysRevA.94.021602
http://dx.doi.org/10.1103/PhysRevA.94.043618
http://dx.doi.org/10.1103/PhysRev.106.1135
http://dx.doi.org/10.1103/PhysRev.106.1135
http://dx.doi.org/10.1103/PhysRevA.84.041604
http://dx.doi.org/10.1103/PhysRevA.86.063609
http://dx.doi.org/10.1142/S0217979206035631
http://dx.doi.org/10.1142/S0217979206035631
http://dx.doi.org/10.7566/JPSJ.85.053001
http://dx.doi.org/10.1103/PhysRevA.93.061603
http://dx.doi.org/10.1103/PhysRevA.94.033619
http://dx.doi.org/10.1103/PhysRevA.94.033619


5

[14] P. B. Blakie, Phys. Rev. A 93, 033644 (2016).
[15] F. Dalfovo and S. Stringari, J. Chem. Phys. 115, 10078 (2001).
[16] S. A. Chin and E. Krotscheck, Phys. Rev. Lett. 74, 1143 (1995).
[17] F. Stienkemeier and K. K. Lehmann, J. Phys. B 39, R127

(2006).
[18] A. Boudjemâa, J. Phys. B 48, 035302 (2015).
[19] A. Boudjemâa, J. Phys. A 49, 285005 (2016).
[20] A. Boudjemâa, Annals of Physics 381, 68 (2017).
[21] R. Ołdziejewski and K. Jachymski, Phys. Rev. A 94, 063638

(2016).
[22] A. Macia, J. Sánchez-Baena, J. Boronat, and F. Mazzanti, Phys.

Rev. Lett. 117, 205301 (2016).
[23] The LHY term derived for the homogeneous system has a small

imaginary part, which for our main case of εdd = 1.64 is
γhomo
QF = γQF(1 + 0.01i) [8]. This arises from unstable modes

in the Bogoliubov treatment of a homogeneous condensate. Due
to finite-size and LHY fluctuation effects, there are no unstable
modes in the droplet and we neglect the imaginary part. Droplet
lifetime will be limited by three-body loss as observed in exper-
iments [3, 4].

[24] S. A. Morgan, S. Choi, K. Burnett, and M. Edwards, Phys. Rev.
A 57, 3818 (1998).

[25] S. Ronen, D. C. E. Bortolotti, and J. L. Bohn, Phys. Rev. A 74,
013623 (2006).

[26] P. B. Blakie, D. Baillie, and R. N. Bisset, Phys. Rev. A 86,
021604 (2012).

[27] H.-Y. Lu, H. Lu, J.-N. Zhang, R.-Z. Qiu, H. Pu, and S. Yi, Phys.
Rev. A 82, 023622 (2010).

[28] M. Ueda and A. J. Leggett, Phys. Rev. Lett. 80, 1576 (1998).
[29] D. S. Petrov, Phys. Rev. Lett. 115, 155302 (2015).

[30] S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).
[31] S. Yi and L. You, Phys. Rev. A 63, 053607 (2001).
[32] σν is the distance where the density falls to 1

e
of npeak along

the ν-axis.
[33] R. N. Bisset and P. B. Blakie, Phys. Rev. Lett. 110, 265302

(2013).
[34] P. B. Blakie, D. Baillie, and R. N. Bisset, Phys. Rev. A 88,

013638 (2013).
[35] S. Giovanazzi and D. O’Dell, Eur. Phys. J. D 31, 439 (2004).
[36] Z.-K. Lu, Y. Li, D. S. Petrov, and G. V. Shlyapnikov, Phys. Rev.

Lett. 115, 075303 (2015).
[37] C. Eberlein, S. Giovanazzi, and D. H. J. O’Dell, Phys. Rev. A

71, 033618 (2005).
[38] L. Santos, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev.

Lett. 90, 250403 (2003).
[39] S. Ronen, D. C. E. Bortolotti, and J. L. Bohn, Phys. Rev. Lett.

98, 030406 (2007).
[40] R. N. Bisset, D. Baillie, and P. B. Blakie, Phys. Rev. A 88,

043606 (2013).
[41] J. F. Dobson, Phys. Rev. Lett. 73, 2244 (1994).
[42] G. Bismut, B. Pasquiou, E. Maréchal, P. Pedri, L. Vernac,

O. Gorceix, and B. Laburthe-Tolra, Phys. Rev. Lett. 105,
040404 (2010).

[43] G. Bismut, B. Laburthe-Tolra, E. Maréchal, P. Pedri, O. Gor-
ceix, and L. Vernac, Phys. Rev. Lett. 109, 155302 (2012).

[44] J. Steinhauer, R. Ozeri, N. Katz, and N. Davidson, Phys. Rev.
Lett. 88, 120407 (2002).

[45] I. Shammass, S. Rinott, A. Berkovitz, R. Schley, and J. Stein-
hauer, Phys. Rev. Lett. 109, 195301 (2012).

http://dx.doi.org/10.1103/PhysRevA.93.033644
http://dx.doi.org/10.1063/1.1424926
http://dx.doi.org/10.1103/PhysRevLett.74.1143
http://stacks.iop.org/0953-4075/39/i=8/a=R01
http://stacks.iop.org/0953-4075/39/i=8/a=R01
http://stacks.iop.org/0953-4075/48/i=3/a=035302
http://stacks.iop.org/1751-8121/49/i=28/a=285005
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2017.03.020
http://dx.doi.org/10.1103/PhysRevA.94.063638
http://dx.doi.org/10.1103/PhysRevA.94.063638
http://dx.doi.org/10.1103/PhysRevLett.117.205301
http://dx.doi.org/10.1103/PhysRevLett.117.205301
http://dx.doi.org/10.1103/PhysRevA.57.3818
http://dx.doi.org/10.1103/PhysRevA.57.3818
http://dx.doi.org/10.1103/PhysRevA.74.013623
http://dx.doi.org/10.1103/PhysRevA.74.013623
http://dx.doi.org/10.1103/PhysRevA.86.021604
http://dx.doi.org/10.1103/PhysRevA.86.021604
http://dx.doi.org/10.1103/PhysRevA.82.023622
http://dx.doi.org/10.1103/PhysRevA.82.023622
http://dx.doi.org/10.1103/PhysRevLett.80.1576
http://dx.doi.org/10.1103/PhysRevLett.115.155302
http://dx.doi.org/10.1103/PhysRevLett.77.2360
http://dx.doi.org/10.1103/PhysRevA.63.053607
http://dx.doi.org/10.1103/PhysRevLett.110.265302
http://dx.doi.org/10.1103/PhysRevLett.110.265302
http://dx.doi.org/10.1103/PhysRevA.88.013638
http://dx.doi.org/10.1103/PhysRevA.88.013638
http://dx.doi.org/10.1140/epjd/e2004-00146-7
http://dx.doi.org/10.1103/PhysRevLett.115.075303
http://dx.doi.org/10.1103/PhysRevLett.115.075303
http://dx.doi.org/10.1103/PhysRevA.71.033618
http://dx.doi.org/10.1103/PhysRevA.71.033618
http://dx.doi.org/10.1103/PhysRevLett.90.250403
http://dx.doi.org/10.1103/PhysRevLett.90.250403
http://dx.doi.org/10.1103/PhysRevLett.98.030406
http://dx.doi.org/10.1103/PhysRevLett.98.030406
http://dx.doi.org/10.1103/PhysRevA.88.043606
http://dx.doi.org/10.1103/PhysRevA.88.043606
http://dx.doi.org/10.1103/PhysRevLett.73.2244
http://dx.doi.org/10.1103/PhysRevLett.105.040404
http://dx.doi.org/10.1103/PhysRevLett.105.040404
http://dx.doi.org/10.1103/PhysRevLett.109.155302
http://dx.doi.org/10.1103/PhysRevLett.88.120407
http://dx.doi.org/10.1103/PhysRevLett.88.120407
http://dx.doi.org/10.1103/PhysRevLett.109.195301

	Collective excitations of self-bound droplets of a dipolar quantum fluid
	Abstract
	Acknowledgments
	References


