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Surface plasmon polaritons (SPPs) are electromagnetic surface waves that travel along the bound-
ary of a metal and a dielectric medium. They can be generated when freely propagating light is
scattered by structural metallic features such as gratings or slits. In plasmonics, SPPs are manipu-
lated, amplified, or routed before being converted back into light by a second scattering event. In this
process the light acquires a dynamic phase, and perhaps an additional geometric phase associated
with polarization changes. We examine the possibility that SPPs mediate the Pancharatnam–Berry
phase, which follows from a closed path of successive in-phase polarization-state transformations on
the Poincaré sphere, and demonstrate that this is indeed the case. The geometric phase is shown to
survive the light → SPP → light process and, moreover, its magnitude agrees with Pancharatnam’s
rule. Our findings are fundamental in nature and highly relevant for photonics applications.

PACS numbers: 73.20.Mf, 03.65.Vf, 42.25.Ja

Introduction. When a physical system is transported
around a closed circuit, it will acquire a phase. This
phase is the sum of two parts, a dynamic phase and a ge-
ometric phase. The former depends on the time it takes
to travel around the circuit, whereas the latter depends
on the shape of the path that is taken. Such a geomet-
ric phase can occur in a wide range of circumstances [1].
It manifests itself in classical systems, such as Foucault’s
pendulum [2], but also in quantum systems where it gives
rise to the Aharonov–Bohm effect [3]. In both these ex-
amples the circuit is a path in ordinary space. How-
ever, as pointed out by Berry [4], a quantum system can
also acquire a geometric phase when its Hamiltonian is
adiabatically moved along a circuit in parameter space.
In optics, another geometric phase, also associated with
an excursion in parameter space, was identified by Pan-
charatnam [5]. The state of polarization of a light beam
can be represented by a point on the Poincaré sphere [6].
When, with the help of optical elements such as polariz-
ers and wave plates, this polarization state is changed in
a cyclical manner, the beam traces out a closed contour
on the sphere. Provided the successive states are in phase
(Pancharatnam’s connection [7]), the associated geomet-
ric phase, or Pancharatnam–Berry phase, as it is called,
is equal to half the solid angle of the contour subtended
at the origin of the Poincaré sphere [8–10]. This result is
known as Pancharatnam’s rule.

Surface plasmon polaritons (SPPs) are electromagnetic
surface waves that propagate along the interface of a
metal and a dielectric. In the burgeoning field of plas-
monics [11–13] the conversion of light into SPPs and
back again is studied. The many promising applications
of plasmonics [14] range from ultrafast computer chips
and novel biosensors to cloaking devices. In all these
examples interference plays a crucial role. It is there-

fore relevant to explore the phase behavior of SPPs. It
is known that the phases of SPP waves (not to be con-
fused with non-propagating, localized surface plasmons
[15, 16]) can be controlled through the excitation process,
e.g., by illuminating circular gratings [17], concentric cir-
cular nanoslits [18], or metasurfaces consisting of arrays
of nanorods [19] or nanoslits [20, 21] by light in specific
states of polarization. In contrast to these studies, we
consider not a single scattering event, but a sequence of
in-phase polarization changes (as required by Pancharat-
nam), which constitute a closed loop on the Poincaré
sphere. Further, part of this loop is traversed by SPPs.
A question which, to the best of our knowledge, has not
been addressed yet, is whether SPPs can carry the topo-
logical Pancharatnam–Berry geometric phase, which is a
consequence of the curvature of polarization space. And
does the Pancharatnam–Berry phase survive the conver-
sion of a light beam into SPPs and back again? These
issues are clearly of importance both from a foundational
point of view and with an eye to applications. The usual
description of polarization changes in terms of Jones al-
gebra [22] cannot shed light on these topics since this for-
malism simply does not include SPPs. Here we report an
experiment which demonstrates conclusively that SPPs
can, indeed, mediate the Pancharatnam–Berry geometric
phase. Moreover, it is found that this phase remains in
existence in the light → SPP → light conversion process,
and its magnitude obeys Pancharatnam’s rule.

Theoretical principle. The conceptual scheme of this
work is sketched in Fig. 1. The cyclical polarization
change of a monochromatic beam is represented by the
closed circuit ABCDEA on the Poincaré sphere. The ini-
tial state A, with linear polarization, lies on the equator.
The beam then becomes right circularly polarized, state
B on the north pole, after passing through a quarter-wave
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FIG. 1. The closed path ABCDEA on the Poincaré sphere
corresponds to successive polarization states. The geodesic
arc BC represents the change in polarization that occurs at
the conversion of the field into surface plasmons and back
again. The angle α specifies the orientation of the linear po-
larizer acting on the light generated by the plasmons.

plate. It is this light that is used to generate SPPs, which
are subsequently converted back into a freely propagating
field. This field is in state C on the equator, with a linear
polarization that is perpendicular to the initial state A.
The light then passes through a linear polarizer with a
variable angle of transmission, α. This moves the light
to another state D, also on the equator. Next, a suitably
oriented quarter-wave plate produces left circularly po-
larized light, indicated by state E on the south pole. A
final linear polarizer is used to complete the circuit by
bringing the polarization back to state A. In traversing
this closed path on the Poincaré sphere the light acquires
a Pancharatnam–Berry geometric phase.
Let us denote the solid angle subtended by the circuit

at the sphere’s origin by dΩ. As seen from Fig. 1, the
two paths ABCA and ADEA together make up the total
circuit. We can thus write

dΩ = dΩABCA + dΩADEA. (1)

The first solid angle dΩABCA = π, because it corresponds
to one fourth of the sphere’s surface. The second solid
angle, dΩADEA, depends on the position of state D, i.e.,
on the transmission angle α of the linear polarizer that is
used to produce this state. This angle is taken to be zero
when the polarizer completely transmits state C. It is
then easily seen that dΩADEA = π−2α. We now assume,
as will be justified later by our experimental results, that
Pancharatnam’s theorem is also valid when part of the
polarization circuit, in this case the geodesic arc BC, is
due to a light → SPP → light process. In that case the
geometric phase accompanying the circuit, δ, satisfies the
relation

δ = dΩ/2 = π − α. (2)

It follows from this expression that we can control the
geometric phase by varying the transmission angle α, i.e.,
by rotating the linear polarizer that changes state C into
state D.

Experiment. We use a Mach–Zehnder interferometer
(see Fig. 2) with a He-Ne laser (λ = 632.8 nm), whose
polarization is set to perpendicular to the optical ta-
ble (state A). This ensures that the polarization is not
changed by beam splitters or mirrors. After beam clean-
ing and collimation the light is divided into two arms by
a 50:50 non-polarizing beam splitter BS1. The field in
the lower arm undergoes a series of polarization changes.
First it is rendered right circularly polarized, state B, by
quarter-wave plate Q1. The beam is then focused nor-
mally onto a grating by lens L2 (focal length f = 11 mm).
This generates SPPs that travel along the sample towards
a nanoslit, a distance of 25 µm from the grating. Here,
the plasmons are converted back into a freely propagat-
ing field with linear polarization, state C (perpendicu-
lar to state A). The emerging field is collected and col-
limated by a microscope objective OB behind the slit.
Next, the beam passes through a rotatable linear polar-
izer P1 with transmission angle α, producing state D on
the equator. Quarter-wave plate Q2, joined with P1 such
that the ensuing field is always left circularly polarized,
generates state E on the south pole. Finally, linear po-
larizer P2 produces state A, thus completing the circuit.
It is crucial that there are no mirrors between Q2 and
P2 that might influence the state of polarization. Mir-
ror M3 directs the field onto a 50:50 non-polarizing beam
splitter BS2, combining it with the upper arm light. We
will demonstrate that this polarization circuit leads to an
SPP-mediated Pancharatnam–Berry phase.
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FIG. 2. Schematic of the experimental setup. The com-
ponents P1 and Q2 are mechanically joined. In the lower
part the sample parameters are shown: aluminum layer thick-
ness b = 400 nm, grating period d = 628 nm, groove height
h = 50 nm, slit width a = 200 nm, and the distance between
the grating and the slit r = 25 µm. Thin layers of SiO2 with
thicknesses of 20 nm and 10 nm are deposited during fabrica-
tion on the top of the sample and inside the grooves.
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The field in the upper arm remains in state A, passes
through a neutral density filter ND, and is at BS2 com-
bined with the field from the lower arm, creating an in-
terference pattern that is recorded with a CMOS camera.
The path length difference is kept within the coherence
length of the laser (about 10–30 cm). This, together with
the neutral density filter, ensures the production of inter-
ference fringes of high visibility. Varying the transmission
angle α (by jointly rotating P1 and Q2) changes the solid
angle of the circuit on the Poincaré sphere, and thereby
alters the geometric phase of the light in the lower arm.
This amounts to a changing phase difference between the
light in the two arms, leading to a transverse shift of the
interference pattern. We measure this shift as a function
of the transmission angle α.

Control tests. The grating is designed by the Fourier
modal method [23] to maximize SPP generation. The
fabrication of the sample (see inset in Fig. 2), as well as
controls which make sure that the light emanating from
the slit in Fig. 2 indeed is due to SPPs [24], are described
in the Supplemental Material [25]. All components are
aligned by checking their back reflection of the incoming
beam to ensure that the beam passes through the cen-
ter and that they are free from tilt. To verify this, we
use two parallel glass plates instead of polarizer P1 and
quarter-wave plate Q2. Almost no change in the inter-
ference pattern is observed when the plates are rotated
over angles of 20, 40, 60, and 80 degrees, as shown in
Fig. 3, with negative angles giving a similar result. This
shows that the dynamic phase remains constant when,
instead of the glass plates, the joined P1/Q2 element
is rotated. Furthermore, to avoid any vibrations these
elements are placed on a motorized stage with tunable
movement speed.

FIG. 3. Interference fringes created by rotating two parallel
glass plates over angles of 20, 40, 60, and 80 degrees. No
significant change appears in the interference pattern. This
demonstrates that the dynamic phase remains constant in our
setup.

Experimental results. Interference patterns were
recorded for different rotation angles α of the combina-
tion of P1 and Q2 (Fig. 2). Measurements were per-
formed for −60◦ ≤ α ≤ 60◦ in steps of 20 degrees. For
each setting a total of ten repeated measurements were
taken to ensure that the phase shifts were not caused
by random environmental factors. An example of the
raw data is given in Fig. 4(a), where the results of five
consecutive measurements for α = 0◦ and 40◦ are shown.
No major variations within the two measurement sets are
found, indicating the consistency of the data. These data
are then averaged and fitted to a sum of six independent
sine curves, as shown in Fig. 4(b). It is seen that the
peak to peak distance for a 2π geometric phase shift is
approximately 116 pixels on the horizontal axis. In view
of Eq. (2), the phase change introduced by rotating the
polarizer over an angle α (from α = 0) is equal to −α.
Therefore, a 1◦ polarizer rotation should correspond to

FIG. 4. (a) Five fringe pattern measurements taken for two
settings of the transmission angle α. Gray shades represent
0◦, whereas green shades represent 40◦. (b) The average val-
ues (dots) of ten successive measurements, and the sine-fitting
of these averages (solid curves). The peak to peak distance
for the α = 0◦ curve is 116 pixels.
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0.322 pixels. This implies the expected shifts for rotation
angles of 20◦, 40◦, and 60◦ are 6.4, 12.9, and 19.3 pix-
els, respectively. Opposite, but equally large, shifts are
expected for negative rotation angles.

In Fig. 5 the averaged and fitted data for seven set-
tings of the polarizer are shown. Here the polarizer-wave
plate combination is rotated from 0 to 180 degrees, and
we show the curves on both sides of the central maximum
peak, which is obtained for 0◦. Negative angles (−20◦,
−40◦, and −60◦) in the figure correspond to 160◦, 140◦,
and 120◦ of rotation, respectively. The solid curves for
positive angles are plotted on the left side of the cen-
tral peak, whereas the dotted curves for negative angles
are plotted on the right side. The vertical dashed line
through the maximum of the α = 0◦ curve helps to es-
tablish that the shifts of the peaks are indeed propor-
tional to α. It is seen, for example, that the peak shifts
for α = 20◦ and −20◦ (solid and dotted red curves) with
respect to the center peak (solid black curve), are −6 and
8 pixels, respectively. This is in good agreement with the
expected value of 6.4 pixels that was mentioned in con-
nection with Fig. 4(b). A similar level of agreement is
found for the other polarizer settings.

We took measurements of the interference pattern from
a single column of the camera. This way the spatial
matching problem of the two beams was minimized.
Also, it is seen in Fig. 5 that the intensity of the peaks
decreases as we move to higher rotation angles, which is
due to the increased blockage of the light by polarizer
P1. The intensity of the reference beam is set lower than
the maximum throughput intensity at 0◦ to enhance the
visibility of the interference fringes.

The expected and observed fringe shifts, as a func-
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FIG. 5. Shifts in the interference pattern due to a geometric
phase carried by SPPs for different angles of rotation of the
polarizer. Negative angles (−20, −40, and −60 degrees) in the
figure correspond to a 160, 140, and 120 degrees of rotation
of the polarizer, respectively.
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FIG. 6. Expected and observed shifts of the interference
fringes as a function of the rotation angle α of the polarizer.
The labels on the right show the corresponding phase shift in
degrees.

tion of the polarizer’s transmission angle α, are plotted
in Fig. 6. The seven measured values (open circles) are
shown together with their respective error bars. The lat-
ter indicate the standard deviation within each set of
ten measurements. The straight solid line represents the
prediction of Eq. (2), while making use of the fact that,
according to Fig. 4(b) and Eq. (2), dΩ/dα = 0.322 pix-
els/degree. It is clear from Fig. 6 that the observed shift
of the interference pattern has a linear dependence on
the transmission angle α that is in precise agreement
with Pancharatnam’s rule, Eq. (2). Furthermore, as was
explained above, we ensured that the dynamic phase re-
mained constant during the experiment, and that the
light emerging from the slit is due to SPPs. Therefore,
the observed shifts are caused by the Pancharatnam–
Berry phase that is mediated by SPPs. This implies not
only that SPPs carry a topological geometric phase, but
also that this phase survives the conversion of a freely
propagating field into SPPs, and vice versa. Incidentally,
this result is somewhat reminiscent of an earlier report
concerning the robustness of quantum entanglement [26].

Conclusions. We have demonstrated conclusively
that surface plasmon polaritons (SPPs), which are highly
polarized electromagnetic surface waves propagating on
metal-dielectric interfaces, are capable of mediating the
Pancharatnam–Berry geometric phase, which is a con-
sequence of the spherical (rather than flat) nature of
polarization space. More specifically, we studied a se-
quence of in-phase polarization changes (as required by
Pancharatnam), which together constitute a closed loop
on the Poincaré sphere. Part of this loop is traversed by
SPPs. The observed geometric phase was shown to be
quite robust, as it survives the conversion of light into
SPPs and back again. The magnitude of the phase sat-
isfies Pancharatnam’s rule. Our finding is of fundamen-
tal importance, since phase is an intrinsic, though very
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subtle, property of light that governs interference. Our
results are also highly relevant for applications in photon-
ics, where conversions between light and SPPs frequently
take place and where the geometric phase enables a new
generation of versatile optical elements.
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homäki, A. T. Friberg, and T. D. Visser, Opt. Express

23, 22512 (2015).
[25] See Supplemental Material at [URL] for the description

of sample fabrication and control experiments of SPP
generation.

[26] E. Altewischer, M. P. van Exter, and J. P. Woerdman,
Nature 418, 304 (2002).


