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We prove the following theorem: axisymmetric, stationary solutions of the Einstein field equations formed
from classical gravitational collapse of matter obeying the null energy condition, that are everywhere smooth
and ultracompact (i.e., they have a light ring) must have at least two light rings, and one of them is stable. It
has been argued that stable light rings generally lead to nonlinear spacetime instabilities. Our result implies that
smooth, physically and dynamically reasonable ultracompact objects are not viable as observational alternatives
to black holes whenever these instabilities occur on astrophysically short time scales. The proof of the theorem
has two parts: (i) We show that light rings always come in pairs, one being a saddle point and the other a local
extremum of an effective potential. This result follows from a topological argument based on the Brouwer
degree of a continuous map, with no assumptions on the spacetime dynamics, and hence it is applicable to any
metric gravity theory where photons follow null geodesics. (ii) Assuming Einstein’s equations, we show that the
extremum is a local minimum of the potential (i.e., a stable light ring) if the energy-momentum tensor satisfies
the null energy condition.

Introduction. The historic LIGO gravitational wave (GW)
detections [1–3] provide strong evidence that astrophysical
black holes (BHs) exist and merge. LIGO and the space-based
detector LISA [4] will allow us to test the nature of compact
objects and the strong-field dynamics of general relativity in
unprecedented ways [5–9].

All LIGO detections so far are consistent with the inspi-
ral, merger and ringdown waveforms produced by binary BH
mergers. In particular, the ringdown phase is sourced by the
relaxation of the final perturbed BH into equilibrium, and it
has been regarded as a distinctive signature of BHs [10, 11].
There is a well-known correspondence between the complex
quasinormal oscillation frequencies of a BH and perturbations
of the light ring [12–15]. Intriguingly, because of this corre-
spondence, all compact objects with a circular photon orbit,
i.e. a light ring (LR), but with no horizon – hereafter dubbed
Ultra-Compact Objects (UCOs) – initially vibrate like BHs,
and only later display oscillations features that depend on their
internal structure (w-modes or “echoes” [16–23]). Therefore
LIGO observations of a ringdown signal consistent with a
Kerr BH imply the presence of a LR, but they do not nec-
essarily exclude the possibility that the merger remnant may
not be a BH [24].

Could the LIGO events be sourced by horizonless UCOs
rather than BHs? In this work we show that UCO mergers
are unlikely within a physically reasonable dynamical frame-
work. We consider the possibility that horizonless UCOs form
from the gravitational collapse of unknown forms of matter
that can withstand collapse into a BH. Assuming cosmic cen-
sorship [25] and causality, such UCOs are smooth and topo-
logically trivial [26]. For such UCOs we prove that LRs al-
ways come in pairs, one being a saddle point and the other a
local extremum of an effective potential. The local extremum
might be either stable or unstable, but Einstein’s equations im-
ply that instability is only possible if the UCO violates the null
energy condition. Thus, UCOs formed through the collapse of

reasonable (albeit exotic) matter must have a stable LR.

It has been argued that spacetimes with a stable LR are non-
linearly unstable [27, 28]. Unless these instabilities operate on
time scales much longer than a Hubble time, our results im-
ply that smooth, physically reasonable UCOs are generically
unstable, and therefore that these objects are unfit as sensible
observational alternatives to BHs.

Setup. Various sorts of exotic compact objects have been
discussed in the literature, some of which may become suffi-
ciently compact to possess LRs. These include boson [29] and
Proca stars [30], gravastars [31], superspinars [32] and worm-
holes [33]. Most of these models, however, are incomplete, in
the sense that no dynamical formation mechanism is known.
Boson stars are an exception in this regard, because they have
been shown to form dynamically (at least in spherical symme-
try) from a process of gravitational collapse and cooling [34].
It is unclear whether collapse can produce ultracompact, ro-
tating boson stars: in fact, recent numerical simulations sug-
gest that it may not be possible to produce rotating boson stars
from boson star mergers [35]. Still, we take spherically sym-
metric simulations with gravitational cooling as a plausibil-
ity argument that some UCOs could form dynamically from
classical (incomplete) gravitational collapse, starting from an
approximately flat spacetime. The collapse stalls before the
formation of an event horizon or high-curvature region, but
the resulting compactness allows for LRs. Assuming causal-
ity, classical dynamical formation from an approximately flat
spacetime implies, via a theorem of Geroch [26], that the re-
sulting spacetime is topologically trivial, so that the discussion
does not apply (e.g.) to wormholes.

Once equilibrium is attained, we assume that the UCO
is described by a 4-dimensional, stationary and axisymmet-
ric geometry. We use quasi-isotropic coordinates (t, r, θ, ϕ),
adapted to the commuting azimuthal (∂/∂ϕ) and stationar-
ity (∂/∂t) Killing vectors. We further assume that the met-
ric is invariant under the simultaneous reflection t → −t and
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ϕ→ −ϕ. The metric functions are assumed to be everywhere
smooth (apart from standard spherical coordinate singulari-
ties). No event horizon exists, and no reflection symmetry Z2

is required on the equatorial plane θ = π/2. Gauge freedom
is used to set grθ = 0, grr > 0 and gθθ > 0. To prevent
closed time-like curves we require gϕϕ > 0. Here and until
otherwise specified we do not make assumptions on the field
equations, so that the results apply to any metric theory of
gravity in which photons follow null geodesics.

The Hamiltonian H = 1
2g
µνpµ pν = 0 determines the null

geodesic flow, where pµ denotes the photon’s 4-momentum.
The two Killing symmetries yield two conserved quantities:
pt ≡ −E and pϕ ≡ Φ, respectively (minus) the photon’s
energy and angular momentum at spatial infinity. The Hamil-
tonian can be split into a potential term, V (r, θ) 6 0, plus a
kinetic term, K > 0: 2H = K + V = 0, where

K ≡ grrpr2 + gθθpθ
2 , (1)

V ≡ gttE2 − 2gtϕE Φ + gϕϕΦ2 . (2)

A LR is a null geodesic with a tangent vector field that is
always a linear combination of (only) the Killing vectors
∂t and ∂ϕ. This implies that the momentum must satisfy
pr = pθ = ṗµ = 0. These conditions can be reformulated
using the effective potential V . Indeed, H = 0 implies that
the following three conditions are equivalent:

V = 0 ⇔ K = 0 ⇔ pr = pθ = 0 . (3)

Hamilton’s equations imply

ṗµ = −
(
∂µg

rrp2
r + ∂µg

θθp2
θ + ∂µV

)
/2 , (4)

where the dot denotes a derivative with respect to an affine
parameter. Thus, at a LR (pr = pθ = ṗµ = 0) we must have

V = ∇V = 0 . (5)

The projection of a LR orbit on the configuration space
(r, θ) will be simply a point, not necessarily on the equato-
rial plane. Moreover, a LR will be stable (unstable) along a
direction xα if ∂2

α V is positive (negative).
The potential functions H±. The “potential” V has the
shortcoming of depending on the photon’s parameters (E,Φ).
Healthier potentials can be introduced as follows [36, 37].
First, cast V in terms of the covariant metric components:

V = − 1

D

(
E2gϕϕ + 2EΦgtϕ + Φ2gtt

)
, (6)

where D ≡ g2
tϕ − gttgϕϕ > 0. Second, observe that Φ 6= 0

at a LR. Indeed, if Φ = 0 and E 6= 0, then V 6= 0, and
Eq. (5) implies that a LR is not possible. Furthermore physical
photons can not have E = Φ = 0, because they must satisfy
E > −Φ gtϕ/gϕϕ (from the requirement that the photon’s
energy must always be positive for a local observer [36]).

Since Φ 6= 0, we define the (inverse) impact parameter σ ≡
E/Φ and factorize V as V = −Φ2gϕϕ(σ−H+)(σ−H−)/D,

introducing the everywhere regular potential functions

H±(r, θ) ≡ −gtϕ ±
√
D

gϕϕ
, (7)

which are independent of the orbital parameters E,Φ. The
LR condition V = 0 requires that either σ = H+ or σ = H−.
These conditions are mutually exclusive, since σ = H± im-
plies that σ − H∓ = H± − H∓ = ±2

√
D/gϕϕ 6= 0, and

in fact they are not constraints on H±. They simply deter-
mine the impact parameter at the LR. Thus, the LR conditions,
V = ∇V = 0 translate, for the potentials H±, into the sole
requirement of a critical point: ∇H± = 0.

To infer the stability of a LR one considers the second
derivatives of H±. In particular, at a LR:

∂2
µV = ±

(
2Φ2

√
D

)
∂2
µH± . (8)

Thus, the signs of ∂2
µV and ±∂2

µH± coincide. A LR can be
either a local extremum of H± or a saddle point. A saddle
point has two proper directions with opposite stability prop-
erties, determined as the eigenvectors of the Hessian matrix
at the LR; at a local extremum, both directions have the same
stability properties. In particular, if both directions are stable
the LR is stable, otherwise it is globally unstable.
LRs always come in pairs. We will now show that under the
dynamical formation scenario we have described above, LRs
of an UCO always come in pairs, with one being a saddle
point and the other a local extremum of H±. The proof relies
on a simple topological argument.

Consider the vector fields v±, with components vi± =
∂iH±, where i ∈ {r, θ}. Let X be a compact, simply con-
nected region of the (r, θ) plane. Both X and v± are 2-
dimensional. The fields v± are maps from X to 2D-spaces
Y±, parameterised by the components of vi±. In particular, a
point in X where v± vanishes – a critical point of H±, that
describes a LR – is mapped to the origin of Y±.

For maps between manifolds such as the ones above, one
can define a topological quantity, called the Brouwer degree
of the map (see e.g. [38, 39]), that is invariant under contin-
uous deformations of the map. Consider two compact, con-
nected and orientable manifolds X,Y of equal dimension and
a smooth map f : X → Y . If y0 ∈ Y is a regular value of
f , then the set f−1(y0) = {x1,x2, · · · } has a finite number
of points, with xn ∈ X , such that f(xn) = y0, and the Jaco-
bian Jn = det (∂f/∂xn) 6= 0. The sign of Jn embodies how
the vector basis in X projects into the basis in Y , and thus
if the map is orientation-preserving or orientation-reversing.
The Brouwer degree of the map f with respect to y0 ∈ Y
is given by deg(f) =

∑
n sign(Jn). The central property of

this quantity is that it does not depend on the actual choice of
the regular value y0, but it is rather a topological property of
the map itself. Moreover, it is invariant under homotopies, i.e.
continuous deformations of the mapping.

To apply this tool to our setup, we take the map f to be
either of the vector fields v±; thus the maps have components
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FIG. 1. Conservation of the Brouwer degree under a smooth defor-
mation of a 2D map (x, y) → ∇H . We have chosen the illustrative
potential H(x, y) = x(x2 − a) − (1 + x2)y2, where a is a local
deformation parameter that does not affect the asymptotic behavior
of the map. Left panel: a = −2; there are no critical points and the
Brouwer degree is zero. Right panel: a = 1; there are two critical
points (one local maximum and one saddle point) and the Brouwer
degree is still zero.

f i± = vi± = ∂iH±. We choose the origin of Y as our reference
point yi0 = {0, 0}. Then the degree of f± becomes:

deg(f±) =
∑
n

sign
[
det
(
∂j∂

iH±
)]

xn
, (9)

where det
(
∂j∂

iH±
)

= grrgθθ
[
∂2
rH±∂

2
θH± − [∂2

rθH±]2
]

has sign 1 (−1) for a local extremum (saddle point). Thus,
we assign a topological charge w ≡ sign(Jn) to each point in
X where v± vanishes, corresponding to a LR, and sum over
all contributions to get the Brouwer degree of v±.

The key point is now that the degree will be preserved under
a continuous deformation of v±, like what we have assumed
will occur as the result of the process of (incomplete) gravita-
tional collapse. In the initial stages of the collapse the compact
object is not yet sufficiently compact to possess LRs. Thus
taking X to be any r, θ domain (except for the standard spher-
ical singularities), we have w = 0: no points with v± = 0
exist (cf. left panel of Fig. 1 for an illustrative example). As
the collapse ends, the v± functions are smoothly deformed
and LRs arise, but the total w must still vanish. It follows
that saddle points and local extrema of H± must form in pairs
under a continuous deformation of the metric functions (right
panel of Fig. 1). Therefore LRs must come in pairs, with one
being a local extremum ofH± and the other a saddle point. In
fact, the argument applies to any spacetime that can be con-
tinuously deformed into flat spacetime.
Spherical Symmetry. So far, we have established that a
smooth UCO spacetime must have at least two LRs, one of
them being a local extremum of the potential, but we have not
yet clarified if this extremum is a stable or an unstable LR.
We will first address this question for spherically symmetric
spacetimes. In this simple case we can show that such LRs are
always stable, without further assumptions.

If the UCO spacetime is spherically symmetric, the metric
can be reduced to the form:

ds2 = −N(r)dt2 +
1

g(r)
dr2 + r2(dθ2 + sin2 θdϕ2) . (10)

The functions H± are explicitly given in terms of the metric
functions by H± = ±

√
N/(r sin θ). Due to symmetry, we

can restrict our analysis to the equatorial plane θ = π/2 with-
out loss of generality; if LRs exist, they can be analyzed on
this plane.

The derivatives of H± along θ on the equatorial plane are

∂θH± = ∓
√
N

r

cos θ

sin2 θ
= 0, (11)

∂2
θH± = ±

√
N

r

(
1 + cos2 θ

sin3 θ

)
. (12)

We can then conclude that ±∂2
θH± > 0 ⇒ ∂2

θV > 0. This
implies that the effective potential is always stable along θ.

Recall that for each LR pair that is created, one LR is a
local extremum of H±, whereas the other is a saddle point.
Since both LRs are stable along the θ direction, in a spheri-
cally symmetric spacetime the local extremum ofH± must be
a globally stable LR.
Axisymmetry. We now turn to the generic case of axi-
symmetry (and stationarity). So far, the arguments have made
quantitative use of test photon dynamics but not of spacetime
dynamics, making them independent on the equations of mo-
tion. In order to assess, in the generic axisymmetric case, if
the LR that extremizesH± is a local maximum or minimum of
V , we will assume Einstein’s field equations (in geometrized
units): Gµν = 8π Tµν . If the energy-momentum tensor Tµν

satisfies, at every point on the spacetime, the null energy con-
dition

ρ ≡ Tµν pµ pν > 0 (13)

for any null vector pµ (i.e. pµ p
µ = 0), it follows that the

LR that extremizes H± is a local minimum of V , and hence
globally stable. To establish this result we will restrict pµ,
from all the possible null vectors, to be the 4-momentum of
a null geodesic. Moreover, we will restrict the computation
of ρ to the location of a LR orbit. It will be convenient to
split the spacetime coordinates into two sets: xµ = {xa, xi},
where {xa} = (t, ϕ) and {xi} = (r, θ). We will use Greek
indices for the full range of spacetime coordinates, early latin
indices (a, b, c, d) for the Killing coordinates (t, ϕ) and mid-
dle alphabet latin indices (i, j, k) for the nontrivial directions
(r, θ). With this notation, we note the following properties. In
general, ∂agµν = 0, gai = 0 and pa = constant. Moreover,
specifically at LRs, pi = 0 and V = pa p

a = 0.
Next, we wish to compute the derivatives of V and compare

them with different geometrical quantities at LRs. It will be
useful to bear in mind that the metric gµν is block-diagonal in
the {xa} and {xi} parts. Hence, e.g., gabgbµ = δaµ. We start
by computing the first derivatives of the potential V :

∂aV = 0 , ∂iV = −papb∂igab . (14)

Looking at the Christoffel symbols Γµab one then obtains:

1

2
∂µV = Γµabp

apb . (15)
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Observe that this expression is nontrivial only for µ = i.
We now need the second derivatives of V . A slightly

lengthier computation shows that

papb∂iΓ
i
ab =

1

2
∂i∂

iV − 2B , (16)

where B ≡
(
gabpcpdg

ij∂ig
ac∂jg

bd
)
/2. Now we invoke Ein-

stein’s field equations to write ρ, defined in Eq. (13), as:

8πρ =

(
Rµν − 1

2
gµνR

)
pµpν = Rµν p

µ pν . (17)

Equivalently, expanding the Ricci tensor, we have at a LR:

8πρ = papb
(
∂iΓ

i
ab − ΓµaνΓνbµ

)
. (18)

An expression for the first term on the right hand side is pro-
vided by Eq. (16). Concerning the second term, it can be re-
expressed, at a LR, as:

papb ΓµaνΓνbµ = −B . (19)

Plugging Eqs. (19) and (16) into Eq. (18) yields

8πρ =
1

2
∂i∂

iV − B . (20)

We will now show that B = 0 at a LR. Since pa =const.
we can rewrite B = gab∂

i (pa) ∂i
(
pb
)
/2, or more explicitly:

2B = grr
{
gtt
(
∂r ṫ
)2

+ 2gtϕ
(
∂r ṫ
)

(∂rϕ̇) + gϕϕ (∂rϕ̇)
2
}

+ gθθ
{
gtt
(
∂θ ṫ
)2

+ 2gtϕ
(
∂θ ṫ
)

(∂θϕ̇) + gϕϕ (∂θϕ̇)
2
}
.

(21)

The “trick” is now to write ∂iϕ̇ as a function of ∂iṫ. Since
V = pap

a = −Eṫ+ Φϕ̇, we have ∂iV = −E∂iṫ+ Φ∂iϕ̇. At
a LR ∂iV = 0, and thus ∂iϕ̇ = (E/Φ) ∂iṫ. Returning to B,
Eq. (21) becomes:

2B =
[
grr
(
∂r ṫ
)2

+ gθθ
(
∂θ ṫ
)2] [

gtt + 2gtϕ
E

Φ
+ gϕϕ

E2

Φ2

]
.

(22)
By comparing with Eq. (6) we see that the last factor is propor-
tional to V , and so it vanishes at a LR. From (20) we therefore
conclude that, at a LR:

ρ ≡ Tµνpµpν =
1

16π
∂i∂

iV . (23)

This elegant and compact result informs us that the trace of
the Hessian matrix of V at a LR determines whether the
null energy condition is violated or not. Explicitly, at a LR,
∂i∂

i V = grr∂2
rV + gθθ∂2

θV . Since grr > 0 and gθθ > 0, if
∂2
rV and ∂2

θV are both negative (positive) then the null energy
condition is violated (satisfied).

We could also consider extensions of Einstein’s theory
whose field equations may be written as Gµν = 8π Tµνeff ,
where Tµνeff is an effective energy momentum tensor. Then,

trivially, a similar result applies, but now the Null En-
ergy Condition (NEC) is stated in terms of this tensor:
Tµνeff pµ pν > 0, with pµ pµ = 0.
Conclusions and remarks. It has long been suggested that
“BH mimickers” – horizonless ultra-compact objects of a
mysterious nature and composition – could exist in Nature.
Detailed observations of celestial BH candidates in electro-
magnetic or gravitational radiation are expected to provide
clear smoking guns to distinguish concrete models of BH
mimickers from “ordinary” BHs.

GWs are one of the cleanest and most pristine observables
to investigate the true nature of BH candidates, in particular
in the wake of the first detections by LIGO. Recent intriguing
arguments imply that UCOs could mimic ordinary BHs even
in the GW channel. The potential similarity between these ex-
otic UCOs and BHs originates from the shared feature that a
LR exists, together with the realization that the most distinc-
tive GW signature of a perturbed BH (its ringdown radiation)
is initially dominated by the vibrations of this LR.

No observational evidence exists, as yet, for UCOs; but sci-
entific open mindedness requires considering all theoretical
possibilities which are not observationally excluded. If one
is willing to seriously contemplate the existence of such hori-
zonless UCOs as BH mimickers, however, one should con-
sider them in all of their physical aspects, starting with plau-
sible formation scenarios. Here we conservatively assumed
that UCOs form from the classical (albeit incomplete) gravi-
tational collapse of some yet unknown form of matter. This
fairly unspecific assumption, together with the assumptions
that the UCO is smooth and causal, led us to a compelling
conclusion: if the UCO has the necessary LR to mimic a BH’s
ringdown, it must also have at least another LR. If the UCO
is spherically symmetric, the second LR is necessarily stable,
without any further requirements. In the more general (and re-
alistic) case where the UCO is axisymmetric, the LR is stable
unless the matter collapsing to form the UCO violates the null
energy condition. These results apply to a UCO spacetime
that is continuously deformable into Minkowski spacetime.
The impact of nontrivial topology is briefly discussed in the
Supplemental Material [40].

These generic conclusions are in agreement with UCOs
studied in the literature. For instance, explicit examples where
boson stars become UCOs have been considered in [36, 37,
41]: in all these cases the matter obeys the null energy con-
dition, and indeed LRs always emerge in pairs, with one of
them being stable.

Note that the null energy condition is relevant in a central
result of general relativity, namely Penrose’s singularity theo-
rem [42]. This theorem strengthens our results: as a byproduct
of Penrose’s singularity theorem, there is no need to assume
that our ultracompact object is horizonless. If a trapped sur-
face were to form, the singularity theorem would imply the
formation of a curvature singularity in the future evolution of
the spacetime. Thus, together with the null energy condition,
our assumption of smoothness implies that the UCOs we con-
sider are horizonless.
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The existence of a stable LR allows electromagnetic or
gravitational radiation to pile up in its neighbourhood. This
radiation may not decay fast enough, potentially triggering a
nonlinear spacetime instability [27, 28]. If such instabilities
are generic, UCO candidates formed from classical gravita-
tional collapse must have astrophysically long instability time
scales in order to be considered as serious alternatives to the
BH paradigm. The calculation of instability time scales in
nonlinear evolutions of UCOs will require numerical work
that is beyond the scope of this paper.
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