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In network systems, a local perturbation can amplify as it propagates, potentially leading to a large-
scale cascading failure. Here we derive a continuous model to advance our understanding of cascading
failures in power-grid networks. The model accounts for both the failure of transmission lines and the
desynchronization of power generators, and incorporates the transient dynamics between successive
steps of the cascade. In this framework, we show that a cascade event is a phase-space transition
from an equilibrium state with high energy to an equilibrium state with lower energy, which can be
suitably described in closed form using a global Hamiltonian-like function. From this function we
show that a perturbed system cannot always reach the equilibrium state predicted by quasi-steady-
state cascade models, which would correspond to a reduced number of failures, and may instead
undergo a larger cascade. We also show that in the presence of two or more perturbations, the
outcome depends strongly on the order and timing of the individual perturbations. These results
offer new insights into the current understanding of cascading dynamics, with potential implications
for control interventions.

Cascading processes underlie a myriad of network phe-
nomena [1], including blackouts in power systems [2, 3],
secondary extinctions in ecosystems [4, 5], and complex
contagion in financial networks [6, 7]. In all such cases, an
otherwise small perturbation may propagate and eventu-
ally cause a sizable portion of the system to fail. Vari-
ous system-independent cascade models have been pro-
posed [8–13] and used to draw general conclusions, such
as on the impact of interdependencies [14] and counter-
measures [15]. There are outstanding questions, however,
for which it is necessary to model the cascade dynamics
starting from the dynamical state of the system.

In power-grid networks, the state of the system is de-
termined by the power flow over transmission lines and
the frequency of the power generators, which must be
respectively below capacity and synchronized under nor-
mal steady-state conditions. Although a local perturba-
tion has limited impact on the connectivity of the net-
work, it may trigger a cascade of failures and protective
responses that switch off grid components and may also
lead generators to lose synchrony. Much of our current
understanding about this process has been derived from
quasi-steady-state cascade models [16–20], which use it-
erative procedures to model the successive inactivation
of network components caused by power flow redistri-
butions, while omitting the dynamics of the generators.
Further understanding has resulted from stability studies
focused on the synchronization dynamics of power gen-
erators in the absence of flow redistributions [21–25].

Yet, to date no theoretical approach has been de-
veloped to incorporate at the same time these two
fundamental aspects of power-grid dynamics—frequency
change and flow redistribution—in the modeling of cas-
cading failures [26]. The goal of our study is to fill this
gap and consider the interaction between these two fac-
tors. Our framework is inspired by energy function anal-
ysis approaches considered in the study of power system

stability [27, 28] and of bistability of circuit elements [29].

Specifically, in this Letter we introduce a continuous
cascade model that includes the dynamics of the state
variables—governed by the swing equations of the gen-
erators, frequency dependence of loads, and power flow
equations—as well as the dynamics of the status variables
describing the on/off (i.e., operational/disabled) condi-
tion of the transmission lines. Within this model, the
steady operating states of the system correspond to sta-
ble equilibria, and a cascade event is a phase-space tran-
sition from one stable equilibrium to another. We study
these states and show that the stable equilibria are the
local minima of an energy-like function. This leads to
numerous important implications that have not been sys-
tematically studied before. In particular, it follows from
the properties of this function that a perturbed system
cannot always reach the equilibrium state predicted by
quasi-steady-state models, and may instead approach an
equilibrium corresponding to a larger cascade; this high-
lights the importance of the dynamics between successive
steps of a cascade, as considered in our continuous model,
which is a factor that has remained unexplored with few
exceptions [1, 30–32]. It also follows that the equilib-
rium energy does not depend monotonically on the num-
ber of failures, and that cascades triggered by multiple
perturbations depend strongly on the perturbation order.
These results suggest the possibility of cascade mitigation
using judiciously designed perturbations to steer the sys-
tem to a preferred equilibrium that would not be reached
spontaneously.

We first consider the protective operation, common to
most power networks, that removes a transmission line
when the flow on it exceeds its capacity. We associate
each line ` with a continuous variable η` representing
its on/off status (as well as the continuous process of
switching between the two conditions) and a parameter
λ` indicating the fraction of the line capacity used by the
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Figure 1. Line-status switch model. (a) Function f(η`) for
a = 10, whose roots are the equilibrium points of Eq. (1) when
λ` = 0 (see also Fig. S1 in Supplemental Material [36]). (b)
Potential function φ(η`) = λ`η` −F (η`), where the local min-
ima for λ` = 0 correspond to the stable equilibria in (a). When

λ` is increased past 1, the local minimum η
(n)
` merges with

η
(c)
` and then disappears.

flow. As shown below, this allows incorporation of line
status into the dynamical equations by scaling the power
flow terms by η`, with η` representing the normal status
for λ` < 1 and the failed status for λ` ≥ 1, where η`
is thus constrained to the interval [0, 1]. To model the
automatic removal of the overloaded lines, we can then
define the dynamics of η` as

η̇` = f(η`)− λ`, (1)

where the r.h.s. is defined to satisfy three physical con-

ditions: (1) for λ` < 1, there are three equilibria η
(f)
` <

η
(c)
` < η

(n)
` , where η

(n)
` ≈ 1 is a stable equilibrium rep-

resenting the normal operation status, η
(f)
` ≈ 0 is a sta-

ble equilibrium representing the failed status, and η
(c)
`

is an unstable equilibrium marking the critical value be-
low which η` evolves to the failed status; (2) for λ` ≥ 1,

only the equilibrium η
(f)
` remains stable, which is satis-

fied if the local maximum of f in (η
(c)
` , η

(n)
` ) is 1; (3) η

(c)
`

is always close to 1, since a line should be fully opera-
tional under normal conditions. The dynamics does not
depend sensitively on the details of function f provided
these conditions are satisfied.

Here we define f(η`) = a−1
[
η`
−1−(1−η`)−1

]
+aη4`−b,

where a and b are positive parameters. The terms η`
−1

and −(1 − η`)−1 constrain η` above 0 and below 1, re-
spectively, as they ensure that f(η`) → ∞ for η` → 0+

and f(η`) → −∞ for η` → 1−. The term η4` allows f

to have three roots—corresponding to η
(f)
` , η

(c)
` , and η

(n)
`

for λ` = 0, as shown in Fig. 1(a). The parameters a

and b are adjustable to set η
(f)
` close to 0, to set η

(c)
` and

η
(n)
` sufficiently close to 1, and to set the local maximum

of f to 1. For this choice of function f , Eq. (1) satis-
fies conditions (1)-(3). Moreover, the equation can be
rewritten as a gradient system η̇` = −dφ(η`)/dη`, where
φ(η`) = λ`η`−F (η`), and dF (η`)/dη` = f(η`). As shown
in Fig. 1(b), the stable equilibria of this system corre-
spond to the local minima of φ(η`).

Following a perturbation, the power flowing on trans-
mission lines can change dynamically. When the flow on
line ` reaches its capacity (λ` ≥ 1), the system will expe-
rience a saddle-node bifurcation and the status variable
η` will evolve to the stable equilibrium η

(f)
` , represent-

ing a line switch-off operation. This is a one-way action,

since the equilibrium η
(f)
` is stable for any value of λ`.

Having defined the dynamics of the status variables,
we now incorporate the system’s protective response into
the dynamical equations governing the state of the net-
work. In a network of n non-generator nodes, each such
node is an electric point where power is extracted by
a load, received from generators, and/or redistributed
among transmission lines. We denote by ng the num-
ber of generators, and by nl the number of transmission
lines. To proceed, we consider the extended representa-
tion of the network [33] in which each generator is now
an additional node connected to the network through a
virtual line (not included in nl and not subject to failure),
leading to a network of n+ng nodes. For notational con-
venience, we reindex the generators as the first ng nodes.

Assuming that the voltage satisfies |Vi| ≈ 1 (in per
unit) for all nodes and that no real power is lost on trans-
mission lines, we can define the state of a power system
as x = (ωωω,δδδ,ηηη). Here, ωωω = (ωi) are the frequencies of
the generators relative to the system’s nominal frequency,
δδδ = (δi) are the phase angles of all other nodes relative
to a reference node (taken to be i = 1, so that δ1 ≡ 0),
and ηηη = (η`) are the status variables of the (non-virtual)
transmission lines L, where ` ∈ L. The state of the sys-
tem is suitably determined by the following equations:

ω̇i = −Di

Mi
ωi −

1

Mi

[
Pi +

∑ng+n
j=ng+1 B̃ij sin δij

]
, i = 1, 2, · · · , ng,

δ̇i = ωi − ω1, i = 2, · · · , ng,

δ̇i = − 1

Ti

[
Pi +

∑ng

j=1 B̃ij sin δij +
∑ng+n

j=ng+1 B̃ijη`i-j sin δij

]
− ω1, i = ng + 1, · · · , ng + n,

η̇`i-j = 10
[
f(η`i-j )− B̃ij(1− cos δij)

W`i-j

]
, `i-j ∈ L.

(2)

Here, δij = δi − δj and B̃ij is a symmetric matrix with nonzero elements Bij = −1/x`i-j , where x`i-j is the tran-
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sient reactance of a generator or is the reactance of a
transmission line, depending on whether line `i-j is vir-
tual or not. The first two equations are the swing equa-
tions describing the dynamics of the generators, where
Mi is the generator rotor inertia, Di is the rotor damp-
ing ratio, and Pi is the negative of the mechanical power

input P
(m)
i of the generator. These equations follow

from Newton’s second law applied to the generator ro-

tor: Ii ω̇i = −Di +
(
T

(m)
i − T (e)

i

)
, where Ii = Mi/ωi is

the moment of inertia, T
(m)
i = P

(m)
i /ωi is the mechan-

ical torque, and T
(e)
i = (1/ωi)

∑ng+n
j=ng+1 B̃ij sin δij is the

torque due to electrical load in the network [34]. The
third equation describes loads (and non-generator nodes
in general) as first-order rotors, where Ti is the load fre-

quency ratio and Pi is the power P
(r)
i requested from a

node. We further assume that
∑ng+n

i=1 Pi = 0, so that
there exists an equilibrium point at ωi = 0 and δi = cte.
Note that the term representing the power flow on line
`i-j is multiplied by the status variable η`i-j , which au-
tomatically turns off the line in the event of an overload

(when η` → η
(f)
` ). The last equation describes the dy-

namics of the status variables, where λ`i-j in Eq. (1) is

replaced by B̃ij(1− cos δij), the reactance energy stored
in the transmission line `i-j , divided by W`i-j , the maxi-
mum reactance energy that line `i-j can hold. The pref-
actor 10 in this equation assures that the time scale for
line failures is much shorter than that of the other dy-
namical changes in the network. For more details on the
derivation of Eq. (2), see Supplemental Material [36].

Importantly, we can show that Eq. (2) can be derived
from a Hamiltonian-like system of the form

ẋ = J∇Ψ(x) := g(x), (3)

where Ψ(x) is an energy function defined as

Ψ(x)=
∑ng

i=1

[1

2
Miω

2
i +

∑ng+n
j=ng+1 B̃ij(1− cos δij)

]
+
∑ng+n

i=ng+1

∑ng+n
j=i+1 B̃ij(1− cos δij)η`i-j

+
∑ng+n

i=2 Piδi −
∑

`i-j∈LW`i-jF (η`i-j ), (4)

and J is a matrix of the form

J =


J11 J12 J13 0
−JT

12 0 0 0

−JT
13 0 J33 0

0 0 0 J44

 . (5)

In this matrix, the off-diagonal blocks are

J12 =
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Figure 2. Simulated cascade event in the Iceland’s power
grid. (a) Diagram of the network, which consists of 35 gener-
ators (�), 189 non-generator nodes (◦), and 203 transmission
lines (–) [35]. The removal of the marked line (×) triggers a
sequence of 6 subsequent line failures (magenta) that separate
the network into 5 clusters (color-coded). (b-c) Correspond-
ing generator frequencies ωi (b) and line-status variables η`
(c) as functions of time (color-coded by cluster). (d) Corre-
sponding fraction λ` of the line capacity used, should the line
overloaded at 0.2 s (arrow) not be disabled.

and the diagonal blocks are

J11 = diag(−M1

D2
1
,−M2

D2
2
, · · · ,−Mng

D2
ng

),

J33 = diag(− 1
Tng+1

,− 1
Tng+2

, · · · ,− 1
Tng+n

),

J44 = 10× diag(− 1
W1
,− 1

W2
, · · · ,− 1

Wnl
).

(7)

For more details on the derivation of Eq. (3), see Supple-
mental Material [36].

Crucially, the matrix J is the sum of a skew-symmetric
matrix and a diagonal matrix with non-positive elements,
from which we can show that dΨ(x(t))/dt = ∇Ψ(x)T ẋ =
∇Ψ(x)TJ∇Ψ(x) ≤ 0. Moreover, because J is also full
rank (which follows from its reduced row echelon form),
we have that dΨ(x(t))/dt = 0 if and only if ∇Ψ(x) = 0,
and hence if and only if ẋ = J∇Ψ(x) = 0. Thus,
when the network is perturbed, the energy function Ψ(x)
monotonically decreases as the system evolves, and be-
comes constant again only when the system reaches an
equilibrium point of Eq. (3) [and hence of Eq. (2)]. Such
equilibria represent stable steady states, where the gen-
erators are synchronized [ω1(t) = ω2(t) = · · · = ωng(t)],
the angle differences are fixed for all pairs of nodes, and
the flow is below capacity for all operating transmission
lines.

We first illustrate our formalism on the Iceland’s
power-grid network, shown in Fig. 2(a) (for parameter
setting, see Supplemental Material [36]). The system
is designed to have a stable steady state with no addi-
tional failures when any single transmission line is miss-
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ing, which is verified in our simulations. We test whether
such a cascade-free steady state is actually reached fol-
lowing the removal of a line when the transient dynamics
between steady states represented in our model is taken
into consideration. Starting from the stable steady state
determined by Eq. (2), we simulate all 68 single-line re-
moval perturbations that keep the network topologically

connected (performed by changing η` to η
(f)
` ). Of these,

10 do not converge to the best available stable steady
state and instead undergo subsequent failures (Fig. S3
in Supplemental Material [36]). Insights into the under-
lying mechanism are provided by the example shown in
Fig. 2(a)-(c), where a sequence of line overloads sepa-
rates the network into 5 clusters. As shown in Fig. 2(d),
the system would eventually have approached the de-
signed steady state with no additional failures, but a
line overload—whose automatic switch-off triggers sub-
sequent overloads—occurs before the system can reach
that state. In this case, no feasible trajectory exists in
the phase space connecting the initial state to the steady
state predicted by quasi-steady-state models. This sce-
nario is common in general, as shown for five other sys-
tems in the 3rd column of Table S2 (Supplemental Ma-
terial [36]).

When the network is subject to multiple perturbations,
our framework shows that the cascade outcome will gen-
erally depend on the order and timing of the perturba-
tions. A natural measure to quantify this difference is the
size C ′ (i.e., number of nodes) of the largest connected
cluster in the post-cascade stable state. As an illustra-
tion, we consider the following three scenarios for two
single-line removal perturbations: i) remove line `i1-j1
and then, after the stable state is reached, remove line
`i2-j2 ; ii) same as in i) but for `i1-j1 swapped with `i2-j2 ;
iii) remove `i1-j1 and `i2-j2 concurrently. Considering all
2, 117 pairs of lines (`i1-j1 , `i2-j2) that keep the Iceland’s
network connected after their removal (but not necessar-
ily after the resulting cascading failures), our simulations
indicate that 30.0% of these perturbations lead to cas-
cades in at least one of the scenarios above. For this
subset of line pairs, we obtain that: 1) “order matters”
in 27.9% of the cases, in that C ′ differs for at least one
of the scenarios; 2) choosing between the orders in i) and
ii) leads to the largest C ′ in 20.8% of the cases; 3) i) and
ii) lead to equally best C ′ in 4.3% of the cases; 4) the
concurrent removal scenario iii) trumps i) and ii) in the
remaining 2.8% of the cases (for specific examples, see
Figs. S4 and S5 in Supplemental Material [36]). Similar
trends are observed for all five other systems considered,
as shown in Table S2 (Supplemental Material [36]). This
order dependence has potential implications for control,
as it can be exploited in proactive line removals to pre-
vent subsequent failures (Fig. S6 in Supplemental Mate-
rial [36]). This reveals a sharp contrast between processes
for which order is immaterial, such as percolation, and
the cascades considered here.
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Figure 3. Energy levels Ψ(x) of the stable states in the 14-
bus test system. Each panel shows all combinations of 1 (left
column) to 7 (right) successive line removals that leave the
network connected. (a) All stable states determined using
the MATLAB function fsolve. (b) Subset of stable states in
(a) that the system actually evolves to for the same line re-
movals as in (a). Also marked are the fractions of perturba-
tions for which a stable state is identified (a) and the fractions
of those stable states actually reached (b). The diagram on
the r.h.s. shows the topology of the network.

Taking the analysis one step further, our formalism of-
fers unique insight into the relation between line removal
perturbations and energy levels. Figure 3(a) shows all
energy levels for stable steady states of the IEEE 14-bus
test system (chosen in place of the Iceland’s network to
avoid a cluttered picture) for all combinations of 1 to
7 single-line removals that keep the network connected.
Figure 3(b) shows the states that the system actually
approaches following these successive line removals—the
missing states [compared to Fig. 3(a)] are the ones not
reached because the system undergoes a cascade.

Two major results follow from this. First, it confirms
that upon perturbation the system often does not reach
the available stable steady state with smallest number of
failures (e.g., for 7 line removals, this is so for 98% of
all cases). Second, the range of energy levels with k + 1
line removals overlaps with the range for k line removals.
There are, for example, stable steady states with only one
line failure at lower energy than many stable states with
2, 3..., 6 line failures. This shows that, following a pertur-
bation that could eventually lead to a stable state with
multiple failures, the system can in principle be steered to
a lower-energy state which has, nevertheless, a reduced
number of failures. Crucially, this is possible without
external input of energy as the system tends to go spon-
taneously to lower energy states following a perturbation.

In summary, the model presented here accounts—in
a single phase space—for the interaction between the
dynamics of a cascade and the changes to the underly-
ing network structure imposed by the resulting failures.
The results explain the combinatorial impact of pertur-
bations, identify conditions under which a cascade may
develop despite the presence of a stable state that would
withstand the perturbation, and suggest new opportuni-
ties for cascade control.
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