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We show how to realize two-component fractional quantum Hall phases in monolayer graphene by
optically driving the system. A laser is tuned into resonance between two Landau levels, giving rise
to an effective tunneling between these two synthetic layers. Remarkably, because of this coupling,
the interlayer interaction at non-zero relative angular momentum can become dominant, resembling
a hollow-core pseudo-potential. In the weak tunneling regime, this interaction favors the formation
of singlet states, as we explicitly show by numerical diagonalization, at fillings v = 1/2 and v = 2/3.
We discuss possible candidate phases, including the Haldane-Rezayi phase, the interlayer Pfaffian
phase, and a Fibonacci phase. This demonstrates that our method may pave the way towards the
realization of non-Abelian phases, as well as the control of topological phase transitions, in graphene
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quantum Hall systems using optical fields and integrated photonic structures.

Introduction. The fractional quantum Hall (FQH) ef-
fect is a fascinating phenomenon, where electron-electron
interactions and a magnetic field lead to strong correla-
tions [IH3]. Soon it was realized [4H7] and experimentally
confirmed [8, @] that the electron spin plays an impor-
tant role at several fillings. More generally, multicompo-
nent FQH phases [10] occur in systems with subbands, as
wide quantum wells [TTHI4], with layers, as double wells
[I5L[16], or with degenerate valleys, as AlAs quantum well
[1I7] or graphene [I8-21]. Much effort has been made to-
wards engineering system parameters like tunneling, in
order to realize different phases. Here we propose a new
method based on light-matter interactions which enables
flexible control in a synthetic FQH bilayer.

Interactions between light and graphene quantum Hall
samples have been subject of many theoretical [2225]
and experimental [26H29] studies. FQH phases in inte-
grated GaAs quantum well-cavity structures have also
been explored experimentally [30]. A distinctive feature
of graphene is the linear dispersion, resulting in non-
equidistant Landau levels (LLs) [31] which can selectively
be coupled with resonant light.

The present letter explores this possibility. While in
the absence of light a large gap freezes out all but one
LL, resonant light coupling to an empty level provides
an effective tunneling to this new degree of freedom. The
coupled LLs can then be viewed as two layers of a physical
bilayer. Depending on the tunneling rate, which is tun-
able via the laser intensity, the system either polarizes in
the lower dressed LL, or it realizes a singlet phase. Anal-
ysis of the Coulomb interaction between different LLs
shows that the repulsion between singlet pairs becomes
particularly small when first and second LLs are cou-
pled, resembling a hollow-core Haldane pseudo-potential
[2,B2]. Such interaction favors the formation of a many-
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FIG. 1. (a) A single graphene layer driven by light at Rabi

frequency Q. (b) LL structure with partial filling and optical
transitions LLo—1 and LL1_5. (c¢) Formation of dressed states
due to coupling between two LLs.

body singlet phase, which we confirm explicitly by exact
diagonalization (ED), at filling v = 1/2 and v = 2/3. We
identify the polarized phases as a composite Fermi sea
(v = 1/2) [33], and a quasi-hole conjugate 1/3 Laugh-
lin state (v = 2/3) [34]. The singlet phase at v = 1/2
has good overlap with the Haldane-Rezayi phase [35], an
intriguing gapless quantum Hall phase [36H39]. Some ev-
idence of non-Abelian quantum Hall singlets are found
at v = 2/3, including the Fibonacci phase [40] and the
interlayer Pfaffian phase [41] [42], which are interesting
candidates for topological quantum computing [43].
System. We consider a monolayer of graphene un-
der a perpendicular magnetic field, in the quantum Hall
regime [31]. We restrict ourselves to a single valley,
and assume that the electron spin is fully polarized.
The single-particle states are given by spinors of the

form Wy,5(2) = (=7C; bn-1(2), C;f b ()", where
Ct =
tial coordinates, and ¢,, ;(z) are the (gauge-dependent)
non-relativistic Landau level (LL) wave functions, char-

(1 + 5n,0) /2 are coefficients, z = x — iy are spa-



acterized by the LL index n > 0, and a second quan-
tum number j > 0 [3I]. In symmetric gauge, j spec-
ifies the z-component of angular momentum, while in
Landau gauge, it defines momentum along one direc-
tion in the plane. In graphene, a third quantum number
~v = +1, distinguishes between states at positive and neg-
ative energy, E, , = Yw.\/n, where w, = v2vgp/ly; and
lg = v/c/eB is the magnetic length. The magnetic field
strength is B and the Fermi velocity is vg. In the follow-
ing, we drop the index ~, and assume v = +1, without
loss of generality.

As illustrated in Fig. a,b), we consider a coupling
between the partially filled n = M level at the Fermi
surface to the empty LL n = M +1, described by (A = 1):

Hcoup = ZQj7J’(t)C}L\/[+1,jCM7j’ + H.c.. (1)
J»J

Here, CRL ; and cpr; are the creation and annihilation
operators in LLj; with the (angular) momentum quan-
tum number j. For simplicity, we assume a plane wave
drive, which acts uniformly on all orbitals: Q; ;/(t) =
2025, j» cos(wt), with w the drive frequency, and the Rabi
frequency €2. Within the rotating frame, transformed to

by U = exp [—%wt > (C}L\/[,jcMyj — C}LV[HJCMHJ)}, a
rotating-wave approximation (RWA) removes the time-
dependence from the coupling. The effective single-
particle Hamiltonian then reads

5 .. .
Hp =D —57 + 07, 2)
J

with 0 the detuning of the light from the LL reso-
nance, ie. 6 = FEy ., — Ey — w. The notation of
Eq. 1' using Pauli operators o |M, j) (M, j| —
M +1,5) (M+1,5], and 7 = |[M,j) (M +1,j] +
|M +1,7) (M, j|, captures the analogy to a spin-1/2 sys-
tem, if the n quantum number is interpreted as the z-
component of spin, or to a bilayer system if n is associ-
ated with a layer index. The first term in Eq. cor-
responds to a Zeeman term (in the spin picture), while
the second term mimics interlayer tunneling (in the bi-
layer picture). Both terms are independently tunable.
The single-particle eigenstates are dressed LLs at en-
ergies +£Q = :I:,/% + Q2 see Fig. (C) While strong
coupling and/or far detuning lead to polarization in the
lower dressed level, both manifolds are occupied if the
gap between dressed states becomes small compared to
the interaction strength, e?/elp, i.e. if Q and § are suf-
ficiently small. The transition occurs near  ~ 1072 (in
units of €2 /help), above the threshold required for ther-
malization in the rotating frame Hamiltonian, > 1074,
as estimated below.

Applying RWA to the interactions, the many-body

Hamiltonian reads H = Hgp + Hint, Where
V- Anl,jhnz:jé(; CT CT o e
int — n3,J3,m4,J4° P1FN2,M3+tN04 0y Gy Yng ga YN 08 N4, Ja
{n.5}
(3)
Anh.jlfﬂz J2

The interaction matrix elements A, ;" *% are the same
as without light, but the RWA enforces conservation of
single-particle energy, i.e. 0n,1ny,ng+n,-

Results. Before numerically solving H for small sys-
tems, we gain some intuition by decomposing the in-
teractions into Haldane pseudopotentials [32]. These
pseudopotentials describe the interaction strength V; of
two particles at fixed relative angular momentum j. In
our case, we distinguish between intra-layer processes
Vj(n) within LL,,, and inter-layer processes, ij’w and
VJN’N7 where the index 1 ({) shall denote the LLjs4q
(LLps).  Clearly, the difference between Vj(MH) and

Vj(M) breaks the Zs symmetry usually present in a sys-
tem of two equivalent layers. However, as seen from
Fig. a), this breaking is weak, since only potentials at
odd j contribute to the intra-LL scattering of fermions,
whereas the strongest n-dependence occurs for Vo(n). A
more important difference to standard bilayer systems
stems from the interaction VjN’N where scattering parti-
cles exchange their LL index, while in standard bilayers
only density-density-type interactions ij’“ occur be-
tween two layers. Both types of inter-LL processes can
conviently be accounted for by a single pseudopotential
Vjinter. Therefore, we switch to a singlet/triplet basis,
|£) ~ |1l) £ {1), where the corresponding pseudopo-
tentials are VjjE = (ij’M + V]“’N)/Q. Since |+) (]—))
is even (odd) under particle exchange, it requires odd
(even) j, and it is sufficient to consider

‘/jintcr _ [VjN,H + (_I)J‘GT%Ti /2 (4)

As seen from Fig. b)7 these inter-LL pseudopotentials
Vjinter are dominated by j = 0 for a coupling between
LLy and LL; (denoted LLg_1). In contrast, the repul-
sion between singlets at j7 = 0 is suppressed for a cou-
pling between LL; and LLy (denoted LL;_5), and Vjnter
becomes the dominant contribution. This behavior leads
to the general expectation that coupling LL; _o favors sin-
glet phases and could give rise to bilayer quantum Hall
phases which are derived from a hollow-core Hamilto-
nian. In the following, we will test this expectation at
filling factors v = 1/2 and v = 2/3 using ED on torus
[1l [44], sphere, and disk.

v = 1/2. Since the discovery of FQHE understand-
ing the physics of a half filled LL has been a challenge.
Early generalizations of the Laughlin wave functions to
systems with spin provide an Abelian spin singlet state at
v = 1/2, known as the (331)-Halperin state [4]. However,
in most systems, no quantum Hall plateaux are observed
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FIG. 2. (a) Pseudopotentials for scattering of two particles

in the same graphene LL, n = 0, n = 1, and n = 2. (b)
Pseudopotentials for scattering in different LLs, as defined in
Eq. . If n =1 is coupled to n = 2, Vji“tcr is dominated by
the contribution j = 1.

at v = 1/2. This fact has been explained by Halperin,
Lee, and Read through a theory which attaches all mag-
netic fluxes to composite fermions [33]. As a consequence,
these fermions do not feel a magnetic field, and may form
a compressible Fermi liquid. In an alternative scenario,
the composite fermions undergo BCS pairing which, due
to the Meissner effect, leads to incompressibility [36] [45].
The most prominent paired state is the Moore-Read Pfaf-
fian state. It involves p-wave pairing, and is spin polar-
ized. In contrast, a spin singlet state can be obtained
via d-wave pairing, and is known as the Haldane-Rezayi
(HR) state [35]. Evidences of non-Abelian excitations
have been discussed for both states [37]. The HR phase
has been identified as a critical phase between strong
and weak pairing [36], providing an example for a gap-
less FQH system. Hollow-core two-body interactions, i.e.
pseudopotentials given by V™" ~ §; 1 and V™" ~ §; 1,
yield a parent Hamiltonian for the HR state.

Accordingly, given the pseudopotential structure of
coupled LLs discussed above, the HR phase becomes a
likely candidate for coupling LL;_o. Indeed, for suffi-
ciently weak Rabi frequencies, numerical results support
this expectation: In all three geometries, the ground state
is a singlet, having large overlaps with the HR state (see
Table . We have also evaluated the overlap with the
Jain singlet, which is known to have a large overlap with
the ground state of pseudopotential Vo ~ V7 [46]. How-
ever, since this overlap decreases rapidly with the sys-
tem size, we excluded the Jain singlet as a possible can-
didate [47]. For the observed singlet phase, the topo-
logical degeneracy on the torus is 4¢-fold with ground
states at high-symmetry points K = (0,0), K = (0, N/2),
K = (N/2,0), and K = (N/2,N/2). While this is com-
patible with a (331)-phase, no sizable overlap with this
phase are found in any geometry. The HR phase, as
obtained from the hollow-core model, exhibits ground
states at the same high-symmetry K-points, but has two
linearly independent ground states K = (0,0). This 5¢-

Sphere Disk Torus
v=1/2]| 0.85 (N = 6) 0.97 0.83 (K = 0)
(HR) || 0.75 (N =38) (N=6,L=24) |0.72 (K #0)
0.72 (N = 10) (N =28)
v=2/3][0.99 (N =4) [0.81 (N =6,L = 18)
(IP) || 0.55 (N =8) [0.63 (N =8,L = 36
0.39 (N =12)

TABLE I. Overlaps of ground states in different geometries,
for weak LLi_2 coupling (Q = 1072 and ¢ = 0.02), with
HR state (v = 1/2), and with interlayer Pfaffian (IP) state
(v = 2/3). At v = 2/3, fast decay of the overlap with N
suggests a different phase, possibly a Fibonacci phase (see
discussion), however we are not aware of unique trial wave
functions to test the overlaps with this phase.

fold degeneracy of the HR phase has been discussed as
a consequence of its criticality [36] [37], leading to a zero
mode which can be either occupied or empty. However,
the torus degeneracy of the HR state in the hollow-core
model differs from the number of sectors in the under-
lying conformal field theory which is 4¢ [38], suggesting
that the fifth ground state is not crucial for realizing the
HR phase. In light of this point and based on the strong
numerical evidence, the HR phase appears as the likely
description of the observed singlet phase.

Upon increasing the Rabi frequency, a crossing of en-
ergy levels indicates a second-order phase transition (at
Q =~ 0.025 and § = 0.02 in units e*/elp, for N = 8
electrons on the torus). The ground state on the strong-
coupling side is fully polarized in one LL, and the system
exhibits Fermi sea behavior, indicated by ground states
at finite angular momentum on the sphere, and at non-
zero pseudomomenta on the torus. A Fermi liquid phase
is also found for coupling LLy_; where this behavior ex-
tends to Q — 0. For LL(_1, increasing {2 only rotates the
LL polarization from (3, TZ(])> = N and (3_; ngj)) =0

for @ — 0, to (3 TZ(J)> = 0 and (3; ngj)> = N for
Q0 — oo. This pseudospin rotation is understood on the
single-particle level by assuming that the ground state
always remains polarized in the lower dressed LL.

v = 2/3. At filling fractions 1/¢q with ¢ odd, elec-
trons can anti-correlate by forming a Laughlin state [34].
Similarly, a Laughlin state of holes provides a good trial
wave function at v = 1 — 1/¢, including v = 2/3. In a
bilayer at ¥ = 2/3, various singlet phases compete with
the polarized Laughlin state. Similar to the v = 1/2 case,
Halperin (mmn)-states [4] are possible, including the
(112)-state and the (330)-state, the latter being two un-
correlated copies of the 1/3 Laughlin states. Apart from
these Abelian phases, there are also different non-Abelian
phases. It has been argued that tunneling between the
layers can transform the (330)-state into a phase support-
ing Fibonacci anyons [40]. These anyons are defined by
simple fusion rules, but still allow for universal quantum



computing [43]. Other non-Abelian phases are obtained
via p-type pairing, either between particles within a layer
or between all particles, leading to intra- and the inter-
layer Pfaffian wave functions [41] [42]. Recently, extensive
numerical works have revealed some of these phases if in-
teractions are properly modified [48450]. In particular,
studies on the thin torus [40] as well as exact numerics
[49] point towards a Fibonacci phase if the short-range
contribution to the interlayer interactions is weakened.

In both coupling scenarios, LLg_; and LL;_o, ED on
torus and sphere gives clear hints for a hole-conjugate
Laughlin phase when the Rabi frequency is sufficiently
strong. If the Laughlin state is formulated in a dressed
LL basis, overlaps with this state reach close to 1, see
Fig. [[(c,d). As already observed at v = 1/2, the two
coupling scenarios show different behavior when €2 is de-
creased. Again, while for LLy_; tuning the Rabi fre-
quency only rotates the spin, a transition into a singlet
phase occurs for LL1_o, see Fig. [Bf(e,f). In contrast to
v = 1/2, where the transitions occurs between two gap-
less phases, we now observe a transition between gapped
phases, and the gap vanishes only at the critical point,
see Fig. B[b). Also, at v = 2/3, the transition does not
affect the symmetry of the ground state (K = (0,0) on
both sides).

The identification of the singlet phase at weak LL;_o
coupling is challenging. On the sphere, where our nu-
merics extend up to 12 electrons, we find large gaps for
N =8 and N = 12, but tiny gaps for N = 6 and N = 10,
suggesting a tetra-periodic system behavior. While an in-
tralayer Pfaffian state, requiring mod(NN,4) = 0, would
explain this pattern, the overlap with this state is zero
(for N = 8 on sphere and disk). In contrast, signifi-
cant overlaps are obtained with the interlayer Pfaffian
state (see Table [I)). However, the corresponding (3¢)-
fold torus degeneracy is not seen for 8 or 10 electrons.
Lacking obvious ground state degeneracies beyond the
g-fold center-of-mass degeneracy, an Abelian phase such
as Jain’s spin-singlet state seems possible [3], 46} 5], but
only infitesimal overlap is found. Given the relative weak-
ness of V"% we shall also consider the Fibonacci phase.
On the torus, it is characterized by 2¢ ground states at
K = (0,0) [49]. While we obtain the second and the third
state at K = (0,2) and K = (2,0) on an isotropic torus,
squeezing the torus changes this pattern, and the low-
est two eigenstates indeed become singlets at K = (0, 0).
Moreover, they have large overlaps with the correspond-
ing eigenstates of the hollow-core Hamiltonian (0.76 and
0.81 on an isotropic torus), previously identified as rep-
resentatives of the Fibonacci phase [49]. This makes the
Fibonacci phase more likely than other candidate phases,
although a final conclusion is impossible based on the
available numerical results.

Thermalization. In this work, we have assumed that
the electronic system thermalizes to the ground state in
the rotating frame of the optical drive field. To estimate
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FIG. 3.  (a,b) Energy levels (above ground state in units

of e?/elg) vs. Rabi frequency €, for coupling LLo—1 (a),
and LL;_2 (b). (c,d) Ground state overlaps with trial wave
functions (particle-hole conjugate 1/3 Laughlin state and a
singlet phase obtained from hollow-core model). Trial states
are constructed in three different bases: (1) LL basis. All
the electrons reside in the lower LL. (2) Dressed basis. All
electrons reside in lower eigenstates of Eq. , ie. |j) «
(V82 +492) |M +1, ) +2Q| M, j). (3) Antisymmetric basis.
All electrons reside in the singlet state, i.e., |j) o< —|M +
1,7) +|M,j). (ef) Spin polarization So = 55 >,(>°, 9
of the ground state vs. Q for LLo—1 (e), and LLi_2 (f). Data
in all panels (a—f) was obtained for 8 electrons on the torus,
and 6 = 0.02.

the validity of this approximation, we must compare the
timescale for relaxation of the optically excited Landau
levels to the timescale for thermalization of the electronic
system with the lattice. The carrier lifetime of optically
excited Landau levels has contributions from optical re-
laxation, phonon relaxation, and Auger scattering into
other Landau levels [52]. In Ref. [53], it was measured
at moderate magnetic fields in epitaxial graphene sam-
ples to be roughly 10 - 20 ps. Although one expects
longer lifetimes in higher quality graphene samples suit-
able to observe the FQH effect, we can use this as an
upper bound on the relaxation rate. In units e?/el 5, this
timescale translates to roughly 10~2 to 10~4, depending
on the magnetic field. For LLy_; coupling, the Laughlin
state of the driven and the non-driven regime are adiabat-
ically connected, and one can adiabatically prepare the
system by slowly turning on the light. In contrast, the
singlet states for LL;_o coupling cannot be connected
to the non-driven regime, which makes the thermaliza-
tion problem particularly relevant. For the case of the
v = 2/3 singlet phase, we can roughly estimate the ther-
malization time by the size of the many-body gap in the
spectrum, which, from Fig. [3| is on the order of 1072.
As a result, there is a large separation of timescales be-
tween the thermalization and carrier relaxation, which
allows the system to remain in the rotating frame ground
states before carrier relaxation. For the gapless phases at



v = 1/2 the system will still thermalize in the rotating
frame, however, the timescale is more difficult to esti-
mate as it depends on the slowest diffusive modes in the
system.

A more detailed study of the thermalization dynamics
in this regime is beyond the scope of the present work;
however, it is worth noting that there has been recent
progress in understanding of thermalization of driven iso-
lated systems [54H56] and also thermalization of Floquet
systems coupled to a bath [57, [68]. It has been pointed
out that electron-phonon interaction and specific Fermi
reservoirs could lead to thermalization of the system in
the rotating frame, in the long time steady-state limit
B8]

In conclusion, we have considered single layer graphene
in the FQH regime with an optical field in resonance with
a LL transition. The proposed scheme synthesizes a two-
component FQH system, with the light field playing the
role of tunneling between two layers. For weak tunnel-
ing between LL; and LLy, a many-body singlet phase is
formed at v = 1/2 and v = 2/3. In contrast, strong tun-
neling and/or tunneling between LLg and LL; lead to a
polarized phase within the lower dressed LL. Our study
gives new impetus towards experimental realization of
multicomponent FQH states and in situ control of the
phase transition using externally applied optical fields
and graphene. A similar scheme could also be applied to
other 2D materials with Dirac bands, such as monolayer
transition metal dichalcogenides [59) [60]. Conceptually,
our approach is also connected to recent quantum simu-
lations with cold atoms in which novel topological phases
are engineered in synthetic spatial dimensions which are
generated by the optical coupling of internal states [61l-
68].

Acknowledgments. We acknowledge fruitful comments
by S. Simon, E. Demler, K. Seetharam, and S. Das
Sarma. This research was supported under National
Science Foundation Grants EFRI-1542863, PFC at the
Joint Quantum Institute, CNS-0958379, CNS-0855217,
ACI-1126113 and the City University of New York High
Performance Computing Center at the College of Staten
Island, and AFOSR-MURI FA95501610323, Sloan Fel-
lowship, YIP-ONR.

[1] T. Chakraborty and P. Pietildinen, |The Quantum Hall
Effects| (Springer, New York, 1995).

[2] R. E. Prange and S. M. Girvin, |The Quantum Hall Ef-
fects| (Springer-Verlag, New York, 1990).

[3] J. K. Jain, Composite Fermions (Cambridge University
Press, Cambridge, 2007).

[4] B. I. Halperin, Helvetica Physica Acta 56, 75 (1983).

[6] T. Chakraborty and F. C. Zhang, Phys. Rev. B 29, 7032
(1984),

[6] F. C. Zhang and T. Chakraborty, Phys. Rev. B 30, 7320

(1984).

[7] X. C. Xie, Y. Guo, and F. C. Zhang, |[Phys. Rev. B 40,
3487 (1989).

[8] J. P. Eisenstein, H. L. Stormer, L. N. Pfeiffer, and K. W.
West, Phys. Rev. Lett. 62, 1540 (1989).

[9] J. P. Eisenstein, H. L. Stormer, L. N. Pfeiffer, and K. W.
West, Phys. Rev. B 41, 7910 (1990).

[10] S. M. Girvin and A. H. MacDonald, in|The Perspectives
i Quantum Hall Effects, edited by S. D. Sarma and
A. Pinczuk (John Wiley & Sons Inc., New York, 1997)
Chap. 5, pp. 161-224.

[11] Y. W. Suen, H. C. Manoharan, X. Ying, M. B. Santos,
and M. Shayegan, Phys. Rev. Lett. 72, 3405 (1994).

[12] T. S. Lay, T. Jungwirth, L. Smrcka, and M. Shayegan,
Phys. Rev. B 56, R7092 (1997).

[13] J. Shabani, Y. Liu, M. Shayegan, L. N. Pfeiffer, K. W.
West, and K. W. Baldwin, Phys. Rev. B 88, 245413
(2013)!

[14] Y. Liu, S. Hasdemir, J. Shabani, M. Shayegan, L. N.
Pfeiffer, K. W. West, and K. W. Baldwin, Phys. Rev. B
92, 201101 (2015)!

[15] J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiffer, K. W.
West, and S. He, [Phys. Rev. Lett. 68, 1383 (1992).

[16] Y. W. Suen, L. W. Engel, M. B. Santos, M. Shayegan,
and D. C. Tsui, Phys. Rev. Lett. 68, 1379 (1992).

[17] N. C. Bishop, M. Padmanabhan, K. Vakili, Y. P. Shkol-
nikov, E. P. D. Poortere, and M. Shayegan, Phys. Rev.
Lett. 98, 266404 (2007).

[18] C. R. Dean, A. F. Young, P. Cadden-Zimansky, L. Wang,
H. Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone,
and K. L. Shepard, Nature Physics 7, 693 (2011).

[19] B. E. Feldman, B. Krauss, J. H. Smet, and A. Yacoby,
Science 337, 1196 (2012).

[20] B. E. Feldman, A. J. Levin, B. Krauss, D. A. Abanin,
B. I. Halperin, J. H. Smet, and A. Yacoby, Phys. Rev.
Lett. 111, 076802 (2013).

[21] A. A. Zibrov, C. Kometter, H. Zhou, E. M. Spanton,
T. Taniguchi, K. Watanabe, M. P. Zaletel, and A. F.
Young, Nature 549, 360 (2017).

[22] M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unter-
rainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk,
G. Strasser, and T. Mueller, Nano Lett. 12, 2773 (2012).

[23] D. Hagenmiiller and C. Ciuti, Phys. Rev. Lett. 109,
267403 (2012).

[24] L. Chirolli, M. Polini, V. Giovannetti, and A. H. Mac-
Donald, Phys. Rev. Lett. 109, 267404 (2012).

[25] F. M. D. Pellegrino, L. Chirolli, R. Fazio, V. Giovannetti,
and M. Polini, [Phys. Rev. B 89, 165406 (2014).

[26] M. Byszewski, B. Chwalisz, D. K. Maude, M. L. Sad-
owski, M. Potemski, T. Saku, Y. Hirayama, S. Stu-
denikin, D. G. Austing, A. S. Sachrajda, and P. Hawry-
lak, Nat. Phys. 2, 239 (2006).

[27] Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E.
Schwartz, M. Y. Han, P. Kim, and H. L. Stormer, Phys.
Rev. Lett. 98, 197403 (2007).

[28] M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer,
G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle,
C. Berger, W. A. de Heer, and M. Potemski, [Phys. Rev.
Lett. 101, 267601 (2008).

[29] M. Orlita, C. Faugeras, R. Grill, A. Wysmolek,
W. Strupinski, C. Berger, W. A. de Heer, G. Martinez,
and M. Potemski, Phys. Rev. Lett. 107, 216603 (2011).

[30] S. Smolka, W. Wuester, F. Haupt, S. Faelt, W. Wegschei-
der, and A. Imamoglu, Science 346, 332 (2014).


http://dx.doi.org/10.1007/978-3-642-79319-6
http://dx.doi.org/10.1007/978-3-642-79319-6
http://dx.doi.org/10.1007/978-1-4612-3350-3
http://dx.doi.org/10.1007/978-1-4612-3350-3
http://dx.doi.org/10.1017/CBO9780511607561
http://dx.doi.org/10.5169/seals-115362
http://dx.doi.org/10.1103/PhysRevB.29.7032
http://dx.doi.org/10.1103/PhysRevB.29.7032
http://dx.doi.org/10.1103/PhysRevB.30.7320
http://dx.doi.org/10.1103/PhysRevB.30.7320
http://dx.doi.org/10.1103/PhysRevB.40.3487
http://dx.doi.org/10.1103/PhysRevB.40.3487
http://dx.doi.org/10.1103/PhysRevLett.62.1540
http://dx.doi.org/10.1103/PhysRevB.41.7910
http://dx.doi.org/10.1002/9783527617258.ch5
http://dx.doi.org/10.1002/9783527617258.ch5
http://dx.doi.org/ 10.1103/PhysRevLett.72.3405
http://dx.doi.org/10.1103/PhysRevB.56.R7092
http://dx.doi.org/ 10.1103/PhysRevB.88.245413
http://dx.doi.org/ 10.1103/PhysRevB.88.245413
http://dx.doi.org/ 10.1103/PhysRevB.92.201101
http://dx.doi.org/ 10.1103/PhysRevB.92.201101
http://dx.doi.org/10.1103/PhysRevLett.68.1383
http://dx.doi.org/ 10.1103/PhysRevLett.68.1379
http://dx.doi.org/ 10.1103/PhysRevLett.98.266404
http://dx.doi.org/ 10.1103/PhysRevLett.98.266404
http://dx.doi.org/10.1038/nphys2007
http://dx.doi.org/10.1126/science.1224784
http://dx.doi.org/ 10.1103/PhysRevLett.111.076802
http://dx.doi.org/ 10.1103/PhysRevLett.111.076802
http://dx.doi.org/ 10.1038/nature23893
http://dx.doi.org/10.1021/nl204512x
http://dx.doi.org/10.1103/PhysRevLett.109.267403
http://dx.doi.org/10.1103/PhysRevLett.109.267403
http://dx.doi.org/10.1103/PhysRevLett.109.267404
http://dx.doi.org/10.1103/PhysRevB.89.165406
http://dx.doi.org/10.1038/nphys273
http://dx.doi.org/10.1103/PhysRevLett.98.197403
http://dx.doi.org/10.1103/PhysRevLett.98.197403
http://dx.doi.org/ 10.1103/PhysRevLett.101.267601
http://dx.doi.org/ 10.1103/PhysRevLett.101.267601
http://dx.doi.org/ 10.1103/PhysRevLett.107.216603
http://dx.doi.org/ 10.1126/science.1258595

[31] M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011).

[32] D. F. M. Haldane, “The Hierarchy of Fractional States
and Numerical Studies,” in |The Quantum Hall Effect,
edited by R. E. Prange and S. M. Girvin (Springer, New
York, NY, 1990) pp. 303-352.

[33] B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B
47, 7312 (1993).

[34] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

[35] F. D. M. Haldane and E. H. Rezayi, Phys. Rev. Lett. 60,
956 (1988).

[36] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

[37] N. Read and E. Rezayi, Phys. Rev. B 54, 16864 (1996).

[38] M. Milovanovi¢ and N. Read, Phys. Rev. B 53, 13559
(1996).

[39] Y. Zhang, E. Rezayi,
165102 (2014).

[40] A. Vaezi and M. Barkeshli, Phys. Rev. Lett. 113, 236804
(2014)

[41] E. Ardonne, F. J. M. v. Lankvelt, A. W. W. Ludwig,
and K. Schoutens, Phys. Rev. B 65, 041305 (2002).

[42] M. Barkeshli and X.-G. Wen, Phys. Rev. Lett. 105,
216804 (2010)!

[43] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and
S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).

[44] F. D. M. Haldane, Phys. Rev. Lett. 55, 2095 (1985).

[45] G. Moore and N. Read, Nuclear Physics B 360, 362
(1991).

[46] N. Moran, A. Sterdyniak, I. Vidanovi¢, N. Regnault, and
M. V. Milovanovié, Phys. Rev. B 85, 245307 (2012).

[47] See Supplementary Material for more details on ED in
different geometries, decomposition of interaction into
Haldane pseudopotentials and explicit forms of trial wave
functions, which also includes Refs. [69H77].

[48] S. Geraedts, M. P. Zaletel, Z. Papié, and R. S. K. Mong,
Phys. Rev. B 91, 205139 (2015).

[49] Z. Liu, A. Vaezi, K. Lee, and E.-A. Kim, Phys. Rev. B
92, 081102 (2015)!

[50] M. R. Peterson, Y.-L. Wu, M. Cheng, M. Barkeshli,
Z. Wang, and S. D. Sarma, Phys. Rev. B 92, 035103
(2015)!

[51] L. Belkhir, X. G. Wu, and J. K. Jain, Phys. Rev. B 48,
15245 (1993).

[52] H. Funk, A. Knorr, F. Wendler,
Rev. B 92, 205428 (2015).

[63] M. Mittendorff, F. Wendler, E. Malic, A. Knorr, M. Or-
lita, M. Potemski, C. Berger, W. A. de Heer, H. Schnei-
der, M. Helm, and S. Winnerl, Nat. Phys. 11, 75 (2015).

[64] A. Lazarides, A. Das, and R. Moessner, Phys. Rev. Lett.

and K. Yang, Phys. Rev. B 90,

and E. Malic, Phys.

112, 150401 (2014).

[65] L. D’Alessio and M. Rigol, [Phys. Rev. X 4, 041048
(2014).

[56] P. Ponte, A. Chandran, Z. Papic,
Annals of Physics 353, 196 (2015).

[57] H. Dehghani, T. Oka, and A. Mitra, Phys. Rev. B 90,
195429 (2014).

[58] K. I. Seetharam, C.-E. Bardyn, N. H. Lindner, M. S.
Rudner, and G. Refael, Phys. Rev. X 5, 041050 (2015).

[59] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys.
Rev. Lett. 108, 196802 (2012).

[60] Z. Wang, J. Shan, and K. F. Mak, Nature Nanotech.
(2016), 10.1038 /nnano.2016.213.

[61] O. Boada, A. Celi, J. I. Latorre, and M. Lewenstein,
Phys. Rev. Lett. 108, 133001 (2012).

[62] A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B.
Spielman, G. Juzelitnas, and M. Lewenstein, Phys. Rev.
Lett. 112, 043001 (2014).

[63] N. R. Cooper and A. M. Rey, Phys. Rev. A 92, 021401
(2015)!

[64] S. Barbarino, L. Taddia, D. Rossini, L. Mazza, and
R. Fazio, Nature communications 6, 8134 (2015).

[65] H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, and
N. Goldman, Phys. Rev. Lett. 115, 195303 (2015).

[66] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider,
J. Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte,
and L. Fallani, Science 349, 1510 (2015).

[67] B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, and
I. B. Spielman, Science 349, 1514 (2015).

[68] M. Calvanese Strinati, E. Cornfeld, D. Rossini, S. Bar-
barino, M. Dalmonte, R. Fazio, E. Sela, and L. Mazza,
Phys. Rev. X 7, 021033 (2017).

[69] B. Julid-Diaz and T. GraB, Computer Physics Commu-
nications 183, 737 (2012).

[70] Y.-H. Wu, G. J. Sreejith, and J. K. Jain, Phys. Rev. B
86, 115127 (2012)!

[71] F. Haldane, Phys. Rev. Lett. 51, 605 (1983).

[72] G. Fano, F. Ortolani, and E. Colombo, Phys. Rev. B 34,
2670 (1986).

[73] F. J. M. van Lankvelt, Quantum Hall spin liquids, Ph.D.
thesis, University of Amsterdam (2004).

[74] E. Ardonne and N. Regnault, Phys. Rev. B 84, 205134
(2011).

[75] R. De Gail, N. Regnault, and M. Goerbig, Phys. Rev. B
77, 165310 (2008).

[76] X. G. Wu, G. Dev, and J. K. Jain, Phys. Rev. Lett. 71,
153 (1993).

[77] 1. A. McDonald and F. D. M. Haldane, Phys. Rev. B 53,
15845 (1996)

and D. A. Abanin,


http://dx.doi.org/10.1103/RevModPhys.83.1193
http://dx.doi.org/10.1007/978-1-4612-3350-3_8
http://dx.doi.org/10.1103/PhysRevB.47.7312
http://dx.doi.org/10.1103/PhysRevB.47.7312
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.60.956
http://dx.doi.org/10.1103/PhysRevLett.60.956
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.54.16864
http://dx.doi.org/ 10.1103/PhysRevB.53.13559
http://dx.doi.org/ 10.1103/PhysRevB.53.13559
http://dx.doi.org/10.1103/PhysRevB.90.165102
http://dx.doi.org/10.1103/PhysRevB.90.165102
http://dx.doi.org/10.1103/PhysRevLett.113.236804
http://dx.doi.org/10.1103/PhysRevLett.113.236804
http://dx.doi.org/10.1103/PhysRevB.65.041305
http://dx.doi.org/10.1103/PhysRevLett.105.216804
http://dx.doi.org/10.1103/PhysRevLett.105.216804
http://dx.doi.org/ 10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/PhysRevLett.55.2095
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1103/PhysRevB.85.245307
http://dx.doi.org/10.1103/PhysRevB.91.205139
http://dx.doi.org/ 10.1103/PhysRevB.92.081102
http://dx.doi.org/ 10.1103/PhysRevB.92.081102
http://dx.doi.org/ 10.1103/PhysRevB.92.035103
http://dx.doi.org/ 10.1103/PhysRevB.92.035103
http://dx.doi.org/10.1103/PhysRevB.48.15245
http://dx.doi.org/10.1103/PhysRevB.48.15245
http://dx.doi.org/10.1103/PhysRevB.92.205428
http://dx.doi.org/10.1103/PhysRevB.92.205428
http://dx.doi.org/10.1038/nphys3164
http://dx.doi.org/10.1103/PhysRevLett.112.150401
http://dx.doi.org/10.1103/PhysRevLett.112.150401
http://dx.doi.org/10.1103/PhysRevX.4.041048
http://dx.doi.org/10.1103/PhysRevX.4.041048
http://dx.doi.org/ 10.1016/j.aop.2014.11.008
http://dx.doi.org/10.1103/PhysRevB.90.195429
http://dx.doi.org/10.1103/PhysRevB.90.195429
http://dx.doi.org/10.1103/PhysRevX.5.041050
http://dx.doi.org/ 10.1103/PhysRevLett.108.196802
http://dx.doi.org/ 10.1103/PhysRevLett.108.196802
http://dx.doi.org/10.1038/nnano.2016.213
http://dx.doi.org/10.1038/nnano.2016.213
http://dx.doi.org/10.1103/PhysRevLett.108.133001
http://dx.doi.org/10.1103/PhysRevLett.112.043001
http://dx.doi.org/10.1103/PhysRevLett.112.043001
http://dx.doi.org/10.1103/PhysRevA.92.021401
http://dx.doi.org/10.1103/PhysRevA.92.021401
http://dx.doi.org/ 10.1038/ncomms9134
http://dx.doi.org/ 10.1103/PhysRevLett.115.195303
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/ 10.1126/science.aaa8515
http://dx.doi.org/10.1103/PhysRevX.7.021033
http://dx.doi.org/10.1016/j.cpc.2011.11.017
http://dx.doi.org/10.1016/j.cpc.2011.11.017
http://dx.doi.org/10.1103/PhysRevB.86.115127
http://dx.doi.org/10.1103/PhysRevB.86.115127
http://dx.doi.org/10.1103/PhysRevLett.51.605
http://dx.doi.org/10.1103/PhysRevB.34.2670
http://dx.doi.org/10.1103/PhysRevB.34.2670
http://dx.doi.org/10.1103/PhysRevB.84.205134
http://dx.doi.org/10.1103/PhysRevB.84.205134
http://dx.doi.org/10.1103/PhysRevB.77.165310
http://dx.doi.org/10.1103/PhysRevB.77.165310
http://dx.doi.org/10.1103/PhysRevB.53.15845
http://dx.doi.org/10.1103/PhysRevB.53.15845

	Light-induced fractional quantum Hall phases in graphene
	Abstract
	Acknowledgments
	References


