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We demonstrate that low dimensional Kondo-Heisenberg systems, consisting of itinerant electrons
and localized magnetic moments (Kondo impurities), can be used as a principally new platform
to realize scalar chiral spin order. The underlying physics is governed by a competition of the
Ruderman-Kittel-Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments
with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the
isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-
type phase transition to the phase with chiral spin order. Our finding paves the way towards
pioneering experimental realizations of the chiral spin liquid in systems with spontaneously broken
time reversal symmetry.
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Interactions between magnetic moments usually lead
to some kind of magnetic order where rotational symme-
try is broken and the order parameter is linear in spins [1].
This is what happens in ferromagnets, antiferromagnets
and all sorts of helimagnets. Villain has demonstrated
[2] that, in addition to the magnetic order, helical mag-
nets possess a vector chiral order parameter. It is bi-
linear in spins and is related to the mutual orientation
of neighboring spins. This chiral order breaks the dis-
crete symmetry and can exist even without magnetic or-
der [3]. The discovery of the vector chiral order has given
rise to the idea that there could exist an order which in-
cludes a combination of three spins. The corresponding
order parameter is a mixed product of three neighboring
spins, see Oc in Eq.(1) below and Refs.[4, 5]. It breaks
time-reversal and parity symmetries. Such an order pa-
rameter is considered as the key quantity for descrip-
tion of exotic magnetic phases [4]. In contemporary lan-
guage, Oc is referred to as “scalar chiral spin order” and
the state of matter with (spontaneously) broken time-
reversal and parity symmetries but with conserved spin
rotational symmetry is called Chiral Spin Liquid (CSL)
[6]. The seminal example possessing the CSL symmetry
is the Kalmeyer-Laughlin model [7–10]. Its wave func-
tions demonstrate the topological behavior inherent in
the fractional quantum Hall effect. Thus, the Kalmeyer-
Laughlin model links spin liquids and topologically non-
trivial states [11–16] and can be called “topological CSL”.
An increasing interest in the topological CSL [17–23] is
stimulated, in part, by a search for exotic (anyon) su-
perconductivity [24, 25] and by the physics of skyrmions
[26–29]. The latter can be realized in magnets with the
chirality resulting from the lattice structure or from the
Dzyaloshinskii-Moriya interaction [30–33].

Although the concept of CSL and its order parame-
ter were introduced in the 80ties, it still remains unclear
whether such a state can exist in realistic systems where
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FIG. 1. Competition between spin interactions in KHS: The
spin on each lattice site is decomposed in terms of an or-
thonormal triad e1,2,3 (green arrows) with e⊥ = (−1)N(r)e3,
see Eq.(3). The RKKY exchange interaction (red lines) is
mediated by electrons (red circles) and favours helical-like
configuration of the vectors e1,2. The Heisenberg exchange
interaction (blue line) favours antiparallel orientation of e⊥
on neighboring lattice sites. Coupling constants JK,H are in-
troduced in Eq.(2).

time-reversal symmetry is not explicitly broken. Numer-
ous theoretical suggestions include spin systems with a
complicated set of either Heisenberg exchange interac-
tions extended far beyond nearest neighbors [34–36] or
multi-spin interactions [15, 16], Moat-Band lattices [37],
and even laser-driven Mott insulators [38]. This list can
be continued but, to the best of our knowledge, the ques-
tion is still open and a reliable experimental evidence of
CSL governed by the spontaneously broken time reversal
symmetry is still absent.

The goal of this paper is to demonstrate that this un-
certainty can be removed by realizing CSL in Kondo-
Heisenberg systems (KHS) [39–43] which consist of lo-
calized spins and itinerant electrons. Their coexistence
leads to a competition between the direct Heisenberg spin
exchange and RKKY generated by the electrons, Fig.1:
the short range Heisenberg exchange prefers a commen-
surate Neel order and RKKY prefers an incommensurate
plane spiral order. Thus, the system is magnetically frus-
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trated. When the Heisenberg interaction exceeds some
critical value, see Eqs.(5,6), the compromise between the
two interactions is reached via an Ising-type phase tran-
sition leading to formation of a 3D spiral, Fig.2. It is
accompanied by the spontaneous breaking of the chiral-
ity and by an appearance of the CSL order. This is our
main result.

We emphasize that the scalar chirality is necessary for
the quantum effects mentioned above but it does not re-
quire them and can exist in spin systems where the mag-
netic order is destroyed not by quantum, but by thermal
fluctuations. We shall demonstrate that the CSL state
can emerge in classical (quasi) two-dimensional (2D) sys-
tems when the spin susceptibility of the electrons has a
sharp maximum at some non-zero wave vector Q incom-
mensurate with the lattice. The easiest way to model
this is to assume that the Fermi surface has nested por-
tions. In the second order in the spin-electron coupling
constant, the Fourier transform of the RKKY exchange is
proportional to the spin susceptibility of itinerant elec-
trons and, hence, is strongly enhanced at Q. Without
loss of generality, we can consider KHS with the spins
situated on a 2D lattice with a short range antiferromag-
netic Heisenberg exchange. The spins interact with elec-
trons with a nested Fermi surface. Thermal fluctuations
in 2D prevent long range spin order in SU(2) symmetric
system, but do not prevent the chiral one. When the
Heisenberg exchange overwhelms the RKKY interaction
the scalar chiral order (SCO) emerges as the only non-
trivial order parameter:

Oc =
(
S(r1), [S(r2)× S(r3)]

)
. (1)

S are the spin operators located on neighboring lattice
sites r1,2,3. The energetically favorable spin configura-
tion is presented in Eq.(3). Such 3D spiral of spins is
the only configuration which preserves the constraint on
the spin length and, at the same time, contains Fourier
components with ±Q and Neel wave vectors. We pre-
dict that Oc acquires a non-zero expectation value below
a certain temperature breaking parity and time-reversal
symmetries. Unlike noncollinear magnets, which have
other order parameters (e.g., linear in spins), the ther-
modynamic CSL phase is fully characterized by Oc.

We will now explain how to justify our predictions. We
consider the model combining the Kondo lattice Hamil-
tonian and the Heisenberg interaction between the local
moments, Ĥ = ĤK + ĤH , where

ĤK =
∑
k

ε(k)ĉ†(k)ĉ(k) + JK
∑
r

ĉ†(r)σĉ(r)S(r),

ĤH = JH
∑
r,a

S(r + a)S(r), S = {Sx, Sy, Sz}. (2)

Here ĉT ≡ (c↑(r), c↓(r)) are electron operators at lat-
tice site r; ĉ(k) is Fourier-transformed ĉ(r); σ =
{σx, σy, σz} are Pauli matrices; Sx,y,z(r) are compo-
nents of the spin-s operator S located on lattice site r;
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FIG. 2. Chiral configuration of spins in the CSL phase. The
dotted line is the helix. The green and red arrows show
helical-, S‖, and antiferromagnetic, S⊥, spin components, re-
spectively, see Eq.(3). For simplicity, we disregard helix de-
formations on the scale of several lattice constants which are
caused by the thermal fluctuations of the triad e1,2,3.

JK,H are coupling constants of the isotropic exchange in-
teraction which are much smaller than the bandwidth,
sJK , sJH � D. The Heisenberg exchange acts between
nearest neighbors, i.e., a are smallest vectors of the lat-
tice. To model the above discussed maximum of the elec-
tron spin susceptibility, we assume that the dispersion
ε(k) is nested with a wave vector Q being incommen-
surate with the lattice: ε(k) = −ε(k + Q). We em-
phasize that this is just a simple model providing the
susceptibility maximum and nesting should not be con-
sidered as a strict requirement for our theory. The elec-
tron band is far from half filling. We concentrate on
the regime where RKKY suppresses the Kondo screen-
ing such that the latter can be neglected, see Ref.[44] for
details. For the sake of simplicity, we will not distin-
guish the crystalline- and the spin lattices. To simplify
the calculations, we choose the 2D dispersion relation
ε(k) = k2x/2mx−2ty cos(kyay) [45] which is parametrized
by the effective mass in the x-direction, mx, and by the
hopping integral along the y-direction, ty. Results will be
simplified for the case of a square 2D lattice with equal
lattice constants ax = ay = a0.

A one-dimensional (1D) Kondo chain (a 1D version
of the model Eq.(2) with JH = 0) was studied in
Refs.[44, 46]. It has been shown that, in the case of
densely located spins, the physics is dominated by the
backscattering processes which generate the RKKY ex-
change and suppress the Kondo screening. We have ob-
tained nonperturbative solutions for cases of the easy-
axis and of the easy-plane anisotropy of the Kondo ex-
change. In the latter case, the local spins assemble into
a quasi long range vector chiral (or “helical”) order [47].
The spontaneously chosen helix orientation (left- or right
handed) breaks the helical symmetry of the conduction
electrons which results in a symmetry protection of the
ideal transport.

In this paper, we concentrate on magnetic properties
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FIG. 3. Phase diagram of the isotropic 2D KHS on the plane
T vs. JH at T � s|JK |. The green line is the critical line,
see Eq.(7). It separates the disordered phase and CSL (green
area). JAFM marks the transition from CSL to the antifer-
romagnetic phase (red line) at T = 0. Inset: Temperature
dependence of the mean value 〈sin(α)〉. Note that the SCO
parameter is proportional to this quantity, see Eq.(9).

of KHS. Due to thermal fluctuations, the helical spin
ordering does not occur when the SU(2) symmetry is
present. Therefore, KHS is in a disordered phase at
JH < Jc ∼ (J2

K/D) log(D/|JK |). When JH exceeds Jc,
an Ising-type phase transition occurs and the spins form
SCO, see the phase diagram on Fig.3.

To establish the existence of the CSL it suffices to
calculate the ground state energy of our model in the
proper spin background. These calculations are similar
to those for the 1D Kondo chain [44, 46]. We outline them
for KHS skipping algebraic details. Firstly, we change
from the Hamiltonian to the action and single out slow
fermionic modes located at the right- and left sheets of
the open Fermi surface [45] with an ultimate aim to de-
velop an effective low-energy field theory for the spins.
To do this, we separate fast- and slow spin degrees of
freedom which can be conveniently done with the help of
the parametrization

S(r) = S‖(r) + S⊥(r); (3)

S‖ = s cos(α)
[
e1 cos(Qr) + e2 sin(Qr)

]
;

S⊥ = s sin(α) (−1)N(r)e3; (eiej) = δij .

The triad of mutually orthogonal unit vectors e1,2,3 and
the angle α depend on the coordinate r and change slowly
over the lattice distance a0. To be definite, we choose
the antiferromagnetic Heisenberg exchange on a bipartite
lattice such that N(r) is a sum of all lattice coordinates
for a given site.

We are interested in the state where sin(α) acquires a
nonzero average below some transition temperature and
the triad of vectors e1,2,3 remain disordered, at least at
finite temperatures. As we shall see, the fluctuations of
angle α always remain massive. Its mean value will be
found from minimizing the free energy.

To calculate the ground state energy, we first neglect
space variations of the ei vector fields and integrate out
the electrons [48]. We will comment on the space vari-
ations below while deriving the Landau free energy for

the fluctuations. The spin configuration (3) gaps out
only half of the electronic modes and another half re-
mains gapless. A similar effect has been predicted by us
for the 1D Kondo lattice where the anisotropy is of the
easy plane type and one helical sector of the fermions is
gapped [44, 46]. However, in the SU(2)-symmetric sys-
tem, the axis of the spin spiral fluctuates in space which
does not allow a global identification of gapped and gap-
less fermionic modes. The density of the ground state
energy for the uniform and static configuration reads as

E0/s
2 = JH

∑
a

(−1)N(a) sin2(α) + (4)

+ cos2(α)
[
J̃H(Q)− ρ(εF )J2

K ln
(
D/|sJK cos(α)|

)]
;

where J̃H(q) = JH
∑

a cos(qa) is the Fourier transform
of the Heisenberg exchange interaction; ρ(εF ) is the den-
sity of states (per one unit cell of the lattice) at the
Fermi energy. We emphasize that, if the Fermi surface
is nested, the specific choice of the dispersion relation
has an influence only on ρ(εF ) but neither the structure
of Eq.(4) nor its further analysis depend on details of
ε(k). In the case of a square 2D lattice, (−1)N(a) = −1
such that JH

∑
a(−1)N(a) simplifies to J̃H(G) with G =

{π/a, π/a}. We will use the contracted notation J̃H(G)
for JH

∑
a(−1)N(a) implying that J̃H(G) < 0.

E0(α) has three extrema: one at α = 0 and the other
two at α defined by the following equation:

| cosα| = C(JH) ≡ e−
1
2D

s|JK |
exp

[
J̃H(G)− J̃H(Q)

ρ(εF )J2
K

]
. (5)

The fluctuations of α are massive in both cases. Since
| cos(α)| ≤ 1, the nontrivial minimum defined in Eq.(5)
appears only at sufficiently strong JH . The critical value
can be found from the equation

C(Jc) = 1 ⇒ Jc ∼ ρ(εF )J2
K log(D/s|JK |). (6)

If JH < Jc the minimum of the energy is located at α = 0
and the system is in the disordered phase with Oc = 0
[49]. When JH > Jc, the effective potential Eq.(4) has
two equivalent minima corresponding to different signs
of α 6= 0 defining signs of the finite SCO parameter,
see Eq.(9). This corresponds to the CSL phase. Since
the vacuum is doubly degenerate, the SCO parameter at
T = 0 reflects broken Z2 symmetry and there is an Ising
like phase transition at finite temperature Tc. We can
estimate Tc by the height of the potential barrier in the
effective potential Eq.(4):

JH > Jc : Tc ∼ E0

∣∣
cos(α)=1

−E0

∣∣
cos(α)=〈cos(α)〉. (7)

For JH close to Jc, Eq.(7) simplifies to:

Tc ∼ ρ−1(εF ) [(JH − Jc)/JK ]
2
. (8)

At T < Tc(JH) and JH > Jc, Oc acquires the finite value
[49]:
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Oc = s3〈sin[α(r)] cos[α(r)]2〉
[
(−1)N(r3) sin(∆12)+(−1)N(r1) sin(∆23)+(−1)N(r2) sin(∆31)

]
; ∆jj′ ≡ (Q, rj−rj′). (9)

To describe fluctuations of the vector fields, we have to
integrate over the fermions and to make a usual gradient
expansion keeping only leading terms [50]. This yields
the Landau free energy density for the disordered and
for the chiral phases. At low temperatures and on the
square 2D lattice we obtain:

F =
1

8

∑
j=1,2,3

∑
ν=x,y

Rj,ν(∂νej)
2; (ei, ej) = δij ; (10)

R1,ν = ρ(εF )v2x δν,x − 2〈cos2(α)〉(sa0)2JH cos(Qaν),
R2,ν = R1,ν ,

R3,ν = ρ(εF )v2x δν,x − 2〈sin2(α)〉(sa0)2J̃H(G);

vx is the x-projection of the Fermi velocity. The stiffness
tensor Rj,ν is generically anisotropic. Its anisotropy is
not universal and depends, in particular, on a specific
choice of ε(k) and on temperature.

Eq.(10) has a form of a nonlinear sigma model with
the symmetry SU(2)×U(1). Similar sigma models were
studied in the context of noncollinear antiferromagnetism
[51–53]. Nonlinearity of the theory Eq.(10) comes from
the orthonormality of the vectors ej . In 2D, this in-
teraction generates a finite correlation length ξ [54]. In
the renormalization procedure, this manifests itself as a
continuous decrease of the stiffness components Rj,ν(Λ)
with the decrease of the momentum cut-off Λ. As a re-
sult, the fluctuations acquire a correlation length which is
exponentially large in EUV/T ; EUV is the UV regularizer
[55, 56].

We consider the finite temperatures implying that
thermal fluctuations dominate over the quantum ones at
length scales L > ξ > v/T , where v is a characteristic ve-
locity of the spin excitations. In this case, one can treat
the fields ei as time independent and there is no need to
promote the free energy description to the full dynamical
theory. The thermal fluctuations prevent a breaking of
the SU(2) symmetry of Eq.(10) and the magnetic order
can occur only at T = 0, see Fig.3. This leaves us with
SCO as the only possible order at JH > Jc and T 6= 0.

One has to distinguish two regimes where Eq.(10) can
be used: 1) The model with α = 0 corresponds to the
disordered phase and can be used in the temperature
interval between the Ising transition temperature and the
fermionic gap: Tc � T � sJK . 2) The model with α 6= 0
corresponds to CSL and should be used well below the
Ising transition, Tmin < T � Tc, where one can neglect
fluctuations of 〈sinα〉.

Although all quantum effects in CSL are very inter-
esting we leave their systematic study for the forthcom-
ing paper. At present, we can make only a preliminary
guess: We note that the charge and the spin degrees of
freedom are deeply connected in our approach [57]. The

Kondo lattice model considered in Refs.[44, 46] has the
same property. Based on this analogy and on the fully
quantum theory of Refs.[44, 46], we surmise that non-
trivial excitation of the KHS are slow spinons dressed by
localized electrons.
To summarize, we have found that increasing the di-

rect Heisenberg exchange in the Kondo-Heisenberg model
with the nested Fermi surface leads to a phase transition
to the state with spontaneously broken scalar chirality.
The corresponding chiral order parameter, Oc in Eq.(1),
breaks time reversal and parity symmetry. This symme-
try is Z2 and the transition belongs to the universality
class of the Ising model.

We believe that KHS can be used as a principally new
platform to realize SCO in non-exotic experimental se-
tups. Our finding paves the way towards removing the
doubt whether the chiral spin liquid with the scalar chi-
rality can exist in the realistic systems where the time-
reversal symmetry is not explicitly broken.

Broken time reversal and parity symmetries can reveal
itself in the optical measurements through, for instance,
the Kerr effect or measurements of nonlinear optical re-
sponses. The second harmonic response is particularly
sensitive to the presence of global inversion symmetry.
There are two other, though not definite, experimentally
detectable indicators which can complement the optical
experiments and confirm formation of CSL, namely, pe-
culiar magnetic- and electronic responses of the antiferro-
magnetic KHS with the nested Fermi surface. Firstly, the
energetically favorable spin configuration, Eq.(3), sug-
gests that correlation functions of all spin components
have Q-harmonics. Therefore, spin susceptibilities pos-
sess the Bragg peaks not only on the Neel vector but also
on the wave vectors ±Q. These new peaks are smeared
out by smooth fluctuations of the spinQ-components, in-
cluding the fluctuations of the triad e1,2,3 and of the angle
α. The triad fluctuations are (almost) insensitive to the
Ising phase transition at JH > Jc, T → Tc. However, the
fluctuations of α are suppressed in the CSL phase and,
therefore, the peaks become sharper at JH > Jc, T < Tc.
On the other hand, the response of the itinerant electrons
will experience a drop when the probe frequency and the
temperature are below sJK > Tc. Such a drop is related
to the fact that one half of the electrons acquire a gap
while the other half remains gapless. This decrease in
the number of carriers is expected to alter the electric
properties of a sample, cf. Ref.[58]; more details will be
presented elsewhere. Thus, the full characterization of
CSL predicted in the present Letter can be achieved via
a combination of the optical measurements with mea-
surements of the spin- and electron responses at various
temperatures.
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A model described by the Kondo part of our Hamilto-
nian, Ĥ = ĤK at JH = 0, has been considered in Ref.[59]
on triangular lattice. It has been demonstrated that, for a
particular band filling providing two independent nesting
vectors of the Fermi surface, the chiral order is formed.
We would like to stress that our approach is much more
general and does not require any special fine tuning. Par-
ticularly, details of the band dispersion are not important
for our general predictions. The only crucial ingredient
is the strong maximum of the spin susceptibility of the
itinerant electrons. A nested Fermi surface is just a sim-
ple way to achieve it and should not be considered as
a strict requirement for our theory imposing restrictions
on its experimental verification. Possible candidates for
the experimental realization of KHS with the sponta-
neously broken chirality are proximity-coupled layers of
metals and Mott-insulators. At present, we know at least
one system which is structurally similar to what we pro-
pose. This is Sr2VO3FeAs [60], a naturally assembled
heterostructure made of well separated layers of an iron-
based metal SrFeAs and Mott-insulating vanadium oxide.
One can search suitable materials among similar systems.
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