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Grain boundary (GB) migration controls many forms of microstructural evolution in polycrys-
talline materials. Recent theory, simulations and experiments demonstrate that GB migration is
controlled by the motion of discrete line defects/disconnections. We present a continuum equation
of motion for grain boundary derived from the underlying discrete disconnection mechanism. We
also present an equation of motion for the junctions where multiple grain boundaries meet – as is
always the case in a polycrystal. The resulting equation of motion naturally exhibits junction drag
– a widely observed phenomena in junction dynamics in solids and liquids.

A polycrystalline material may be thought of11

as an ensemble of crystalline grains or, on the12

mesoscale as a network of grain boundaries (GBs)13

– GBs are the interfaces between these differently14

oriented crystalline grains. Because this GB net-15

work has a large impact on a wide range of material16

properties (e.g., strength, toughness, corrosion re-17

sistance, electrical conductivity [1]), its evolution18

is important for engineering materials. The tempo-19

ral evolution of the GB network occurs through GB20

migration. Since GBs are interfaces between crys-21

tals, the microscopic mechanisms by which they22

move are intrinsically different from other classes of23

interfaces (e.g., solid/liquid interfaces, surfactant24

interfaces in micelles, biological cell membranes).25

The microscopic mechanism of GB migration is as-26

sociated with the motion of topological line defects27

(disconnections) in the interface that result from28

the symmetry of the bounding crystals. This crys-29

tallography dependence has a profound effect on30

GB migration; e.g., GB migration may be driven31

by stresses, in addition to such effects as capillarity32

that describe the motion of other interfaces. While33

the motion of other classes of interfaces (in non-34

crystalline matters) has been widely studied on the35

mesoscale, a mesoscale description of GB motion36

(based on its underlying microscopic mechanism)37

is missing. In this Letter, we propose a continuum38

equation of motion for GBs based on the under-39

lying microscopic mechanisms and integrates the40

effects of a diverse range of thermodynamic driv-41

ing forces.42

Experimental evidence has been accumulating43

that GBs move in response to shear stresses [2, 3]44

(in addition to other driving forces [4–6]); we refer45

to this phenomenon generically as shear-coupled46

GB migration. More recent theoretical, simula-47

tion [7–11] and experimental work [3] has shown48

that the GB velocity is proportional to shear stress49

and switches sign upon reversal of the sense of the50

shear. There is also a growing body of evidence51

that shear-coupled GB migration occurs through52

the motion of line defects [12, 13] which may gener-53

ally be referred to as disconnections [14–16]. Dis-54

connections are characterized by both step (step55

height H) and dislocation character (Burgers vec-56

tor b) [16]. The possible (b, H) pairs for a discon-57

nection are determined solely by the GB crystal-58

lography; more specifically for a coincidence-site-59

lattice GB, bs are translation vectors of the bicrys-60

tal lattice [17] and the set of possible Hs are crys-61

tallographically determined for each b [14]. While62

stresses couple to the Burgers vector to move the63

disconnections, disconnections may also move in64

response to driving forces that couple to the step65

height (akin to step flow on a growing surface).66

Figure 1 shows a GB composed of flat sections67

and disconnections. The motion of disconnections68

in the same direction translates the GB while mo-69

tion of disconnections towards (and annihilating70

with) each other changes the GB curvature. Hence,71

both GB migration and change in GB shape can be72

characterized by disconnection motion. We assume73

that disconnection motion is overdamped such that74

the velocity is vd = Mdfd, where fd is the force on75

the disconnection and Md is its mobility (the con-76

stant relating driving force to velocity which may,77

in general, be affected by local bonding, GB struc-78

ture, solute segregation, point defects, etc.).79

In this model we consider GB migration via the80

motion of a single disconnection type that glides81

along a GB (its Burgers vector is in the GB plane;82
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see Fig. 1). Although other disconnections may ex-83

ist (with components of b perpendicular to the GB84

plane), the motion of these tend to be slow and re-85

quire diffusion (relatively unimportant for GB mi-86

gration). Although, at high temperature discon-87

nections of multiple types may be activated, MD88

simulations [7] shows that shear coupling tends to89

be dominated by a single disconnection type ex-90

cept at very high temperature (close to the melting91

point in many cases) for most GBs.92

The driving force on a disconnection has two93

terms fd = fτ + fB. The first term is associated94

with the coupling of the disconnection Burgers95

vector to the stress σσσ (i.e., Peach-Koehler force):96

fτ = (σσσ · b× ξξξ) · ĝ, where ξ is the disconnection97

line direction and ĝ is the glide direction of the98

disconnection [18]. The second term couples the99

motion of the disconnection step to the energy re-100

duction in the system. This term may be associ-101

ated with the energy jump across the GB Ψ; e.g.,102

associated with dislocation density (i.e., the driv-103

ing force for primary recystallization), elastic en-104

ergy (from elastic anisotropy), or artificial energy105

density differences (as used in many atomistic sim-106

ulations of GB migration [19]).107
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b = (b, 0)

H

FIG. 1. A GB with disconnections (blue curve) and its
continuum representation y = h(x, t) (red curve). The
GB velocity v (in the y-direction) results from discon-
nection glide characterized by (b, H) and (−b,−H) in
the x-direction.

On the continuum level, a GB may be modeled108

as a smooth curve (surface), as shown in Fig. 1. We109

assume that the GB “terraces” are parallel to the110

x-direction, the GB shape is y = h(x, t), and the111

disconnection density is small (|hx| � 1; hx is the112

signed disconnection density). The driving force113

for disconnection motion associated with stress is114

fτ = (σi + τ)bhx/|hx|, where σi is the stress from115

all the disconnections in the system and τ is the116

applied stress. If all the disconnections lie on a117

single GB, the stress due to the elastic interaction118

between disconnections is [18]119

σi(x, t) = K

∫ ∞
−∞

βhx(x1, t)

x− x1
dx1, (1)

where K = µ/[2π(1 − ν)], µ is the shear modu-120

lus, ν is the Poisson ratio, and β ≡ b/H is the121

shear-coupling factor [7, 20]. The stress field σσσi122

due to the long-range elastic interaction of dis-123

connections that locate on multiple GBs in a two-124

dimensional microstructure can also be calculated125

from the stress field of dislocations [18] (see Sup-126

plemental Material, SM).127

The bicrystal driving force fB is determined128

from the variation of the energy of the bicrystal129

(with GB length L) E =
∫ L
0

(Ψh + γ
√

1 + h2x)dx130

with respect to the displacement of the disconnec-131

tion, u. Using δE/δu = (H/L)δE/δh, we have132

fB =

(
−δE
δu

)(
− hx
|hx|

)
= (Ψ−γhxx)H

hx
|hx|

, (2)

where |hx| � 1. This expression explicitly ac-133

counts for the GB curvature (Gibbs-Thomson ef-134

fect) with GB energy γ and the energy jump across135

the GB Ψ.136

We relate the evolution of the GB profile h(x, t)137

to the disconnection velocity as ht+vdhx = 0. This138

implies that, if a GB is initially flat (hx = 0), it139

will always remain flat. Hence, neither an applied140

stress τ nor an energy jump Ψ will be able to move141

an initially flat GB, despite simulation and exper-142

imental observations to the contrary [3, 7]. This143

would be true at T = 0 for a faceted GB; however,144

at finite T there is a thermal equilibrium discon-145

nection concentration at any finite driving force.146

Since disconnections form in pairs (or as loops in147

three dimensions), we can write the equilibrium148

disconnection concentration (in analogy to ther-149

mal equilibrium of kinks on a dislocation [18]) as150

ce(T ) = (1/a)e−Fd/(kBT ), where Fd is half the dis-151

connection pair formation energy, a is an atomic152

spacing and kB is the Boltzmann constant. We153

note that it is this thermal density of disconnec-154

tions that gives rise to GB roughening [21].155

Lateral motion of these thermal disconnections156

under finite driving force leads to the motion of157

a nominally flat GB. Inclusion of this effect in158

the equation of GB motion yields ht + vdhx =159

2ceHvd (hx/|hx|). Collecting all of these terms160

leads to the following continuum equation of GB161

motion:162

ht = −Md[(σi+τ)b+ΨH−γhxxH](|hx|+B), (3)

where B = 2Hce(T ). The velocity of each GB seg-163

ment has both local terms (second and third terms164

in the square brackets) and a non-local term (as-165

sociated with the spatial distribution of disconnec-166

tions throughout the microstructure as embodied167

in σi). See SM for the detailed derivation.168

We now apply Eq. (3) to numerically solve two169

GB dynamics problems using a finite-difference ap-170

proach. The materials constants are chosen to rep-171

resent a Σ5 [100] (310) 36.87◦ symmetric tilt GB172
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FIG. 2. (a) Numerical solution for the evolution of a
GB from an initially sinusoidal profile for no externally
applied force τ = 0 and Ψ = 0 and B = 0. The GB
profile is shown for t = 0, 2t0, 6t0, 15t0, and ∞, where
t0 = L/(Mdγ). (b) The evolution of a GB pinned at
two junctions for τ = 5 × 10−2µ at t = 0, 5t0, 10t0,
15t0, and∞ for B = 0.01 (blue) and t = 0, t0, 2t0, 3t0,
and ∞ for B = 0.1 (red).

in aluminum (see SM for details of the numerical173

method and choice of parameters). The first ap-174

plication is to the capillarity-driven flattening of a175

sinusoidally perturbed GB profile; there is no ap-176

plied stress (τ = 0) or energy jump across the GB177

(Ψ = 0).178

Figure 2a shows that an initially perturbed GB179

profile evolves to a flat profile even at T = 0180

(B = 0). Although flattening is expected based on181

motion by mean curvature and the capillary term182

is indeed included in Eq. (3), the dominant driv-183

ing force in our simulations is the long-range elastic184

interaction between disconnections (σi 6= 0). We185

see that, although the GB starts smooth and ends186

flat, sharp corners form at the extrema of the pro-187

file and the corresponding jump in slope tends to188

zero as the GB becomes flat. This results from the189

|hx| term that gives rise to the discontinuity in the190

slope at the extrema of the GB profile. This is a191

dynamics, rather than energetics, effect.192

Our next example is an initially flat GB pinned193

between two points, such as may occur where a GB194

is delimited by two stationary GB triple junctions195

(TJs) – of course, in a real polycrystal, TJs are196

not fixed (we return to mobile TJs below). This197

case is shown in Fig. 2b, where the GB migration is198

driven by the stress τ = 5× 10−2µ (Ψ = 0). Since199

a flat GB will not move without disconnections, we200

set B = 0.01 (blue) and 0.1 (red). Larger values201

of B correspond to higher temperature. Figure 2b202

shows that the applied stress/shear coupling causes203

the GB to bow out between the pinning points204

from the initially flat profile to a time-independent205

(equilibrium) shape at late time. Such discon-206

nection pair nucleation induced GB curvature has207

been experimentally observed [22]. While the de-208

tailed shape (and rate of evolution) of the evolving209

x
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FIG. 3. Illustration of TJ motion (red arrow) through
disconnection fluxes from three GBs.

GB is different for different values of B (or T ),210

the late-time, stationary shape is independent of211

B (the equilibrium profile is determined by a bal-212

ance between the driving forces due to the applied213

stress, the elastic interactions between disconnec-214

tions, and capillarity). Also note that, unlike in the215

evolution without thermal disconnection (B = 0)216

in Fig. 2a, here no corners form in the evolving217

profile. This is a consequence of the inclusion of218

a non-zero equilibrium disconnection density B in219

Fig. 2b, which regularizes the discontinuity associ-220

ated with |hx| in Eq. (3). Not surprisingly, larger221

equilibrium disconnection densities (larger B) lead222

to faster evolution.223

While the previous TJ-pinned GB evolution ex-224

ample (Fig. 2b) provides insight into how a finite-225

size GB profile may evolve, it is not a good repre-226

sentation of a GB in a polycrystal. If the TJs do227

not move, the average grain size would not evolve;228

there would be no grain growth. At the same time,229

disconnections cannot move across TJs because the230

GBs meeting there will, in general, have distinct231

(b, H) sets.232

The disconnection flux into a TJ will translate233

the TJ; disconnections from different GBs may re-234

act (and partially annihilate) at the TJ – see Fig. 3.235

Here we present a model for TJ motion based on236

the conservation of disconnection step height and237

Burgers vector at a TJ. The displacement of TJ is a238

consequence of disconnection steps flowing into the239

TJ. TJ motion influences the evolution of (motion240

of disconnections on) the three GBs via continu-241

ity conditions and Burgers vector accumulation at242

the TJ creates a back stress on the disconnections243

on the GBs. This means that TJ motion appropri-244

ately accounts for both the step and Burgers vector245

fluxes at the TJ and feeds back into the motion of246

the three GBs meeting there. See SM for details.247

Following this approach, the TJ velocity vtj at248
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x0 is proportional to the total inward disconnec-249

tion flux J(x0) along each of the three GBs meet-250

ing at the TJ:251

vtj = −
3∑
i=1

H(i)J (i)(x0)n(i), (4)

where n(i) is the normal to the reference (flat)252

GB(i), J (i)(x0) = (ρ(i)(x0) + B/2)v
(i)
d (x0) for dis-253

connections moving toward the TJ (and J (i)(x0) =254

0 otherwise), v
(i)
d is the disconnection velocity255

along GB(i), and ρ(i) is the disconnection density256

at the TJ. ρ(i) = (∂h(i)/∂s(i))/H(i) where h(i) is257

the GB profile measured in the n(i) direction and258

s(i) is the arclength of GB(i) such that (s(i),n(i))259

forms a right-hand coordinate system. We note260

that the TJ may have an associated Burgers vector261

arising from the divergence of the Burgers vector262

flux there – the elastic field of this TJ Burgers vec-263

tor interacts with the disconnections on the GBs264

(see SM).265

Disconnection reactions at TJs require atomic266

rearrangement on the scale of GB width or discon-267

nection core size and cannot be described solely on268

the basis of continuum descriptions. In the case269

where disconnection motion along the GBs is fast270

compared with the kinetics of disconnection reac-271

tions at the TJ, TJ motion is controlled by dis-272

connection reactions at the TJs. In this case, the273

effective disconnection velocity at the TJ v
(i)
d (x0)274

should be replaced by a constant that relates to275

disconnection reaction rate constants at the TJ;276

i.e., v
(i)
d (x0) → A(i). In the A(i) → 0 limit, the277

TJ will not move, while in the A(i) → ∞ limit,278

the disconnections near the TJ move infinitely fast279

and the disconnection density at the TJ remains280

zero.281

As an example of coupled GB and TJ migra-282

tion, we consider a schematic, simplified model283

“microstructure” depicted in the inset of Fig. 4a;284

the system is periodic along the x-direction, is of285

infinite extent along y, and all GBs have identi-286

cal properties. This is a very special case where287

in steady state, the flux of Burgers vectors into288

the TJ exactly cancel. A discussion of Burgers289

vector reaction at the TJ is discussed for more290

general cases in SM. In the absence of an exter-291

nal driving force on the GBs, the system equili-292

brates such that all GBs are flat and meet at the293

equilibrium angle θ0 = 2π/3. We drive the mi-294

crostructure evolution by a uniaxial tensile stress,295

σyy, that produces equal and opposite shear on the296

GBs of opposite slopes and no shear on the verti-297

cal GBs. Because of the symmetry of the prob-298

lem, the vertical GBs remain vertical and the TJs299

move only in the ±y-direction. For this special300

case, the TJ/GB microstructure translates verti-301

cally at a steady-state velocity obtained by solving302

the continuum GB/TJ evolution Eqs. (3) and (4)303

as a function of the kinetic parameter (0 ≤ A ≤ ∞)304

via a finite-difference method (see SM). Figure 4a305

shows this steady-state microstructure and Fig. 4b306

shows the steady-state velocity of the GBs/TJs, as307

well as the steady-state TJ angles, θ∧ and θ∨ (see308

Fig. 4a) as a function of A.309
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FIG. 4. (a) Equilibriu GB profiles for A/(MdBH/d) =
0 (blue), 67.6 (green), 135.2 (red), and ∞ (black), at
an applied shear stress τ = 5×10−2µ. (b) The steady-
state GB velocity (blue line) and angles, θ∧ and θ∨,
as functions of A. The red solid (dashed) lines are the
angles at equilibrium states for τ = 5×10−2µ (10−2µ).

In the disconnection migration-controlled (large310

A) regime, the applied tensile stress drives the311

GB/TJ migration at a velocity v∞ = MdBτb such312

that the GBs remain flat and the TJ angles are at313

the equilibrium value, θ∧ = θ∨ = θ0 (see Fig. 4).314

The fact that the translating GB shapes and TJ315

angles are identical to those in equilibrium (zero316

driving force) may be traced to the equilibrium317

disconnection density all along the GB (non-zero318

B in Eq. (3)) and the lack of a reaction barrier319

at the TJ. Note, however, these results (straight320

GBs and equilibrium angles) are special since the321

Burgers vectors from the disconnection cancel (in322

the x-direction) here, while in general they will not323

creating a back stress that will repel the disconnec-324

tions from the TJ.325

In the disconnection reaction-controlled (small326

A) regime, stress-driven GB migration leads to327

translation velocities v < v∞ and curved GBs. In328

the A → 0 limit, the GB profile goes to a steady329

state (i.e., v → 0), the GBs are strongly bowed330

and the TJ angles deviate from the equilibrium331

angles by up to 60% (for τ/µ = 0.05). As A in-332

creases (smaller reaction barriers at the TJs), the333

GBs and TJs move faster, become increasingly flat,334

and the TJ angles approach their equilibrium value335

θ0. Figure 4b also shows that the magnitude of336

the deviation of the TJ angles from θ0 increases337

with increasing applied stress (cf. the red lines in338

Fig. 4b). The deviation of the TJ angles from θ0339
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with increasing velocity is consistent with obser-340

vations in capillarity-driven GB migration [23, 24]341

and contact lines in fluid/solid systems [25].342

The continuum equations of motion for GBs and343

TJs presented are based on a disconnection de-344

scription of GB dynamics. A feature of the dis-345

connection description is the existence of the cou-346

pling factor β = b/H which relates to the underly-347

ing GB bicrystallography. While the bicrystallog-348

raphy admits infinitely many (b, H) sets for each349

GB [26], at low temperature the (b, H) set (and β)350

observed in experiment/atomistic simulation cor-351

respond to the lowest formation energy. As tem-352

perature increases, higher-energy (b, H) sets may353

be activated, changing the observed value of β (av-354

erage over all the activated (b, H) sets). Also,355

the value of β observed may depend on the na-356

ture of the driving forces, since some couple to b357

and others to H. β may be determined based upon358

bicrystallography and a small number of atomistic359

simulations. Nonetheless, the equations of motion360

presented remain valid given the appropriate value361

of β.362
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