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While a variety of fundamental differences are known to separate two-dimensional (2D) and
three-dimensional (3D) fluid flows, it is not well understood how they are related. Conventionally,
dimensional reduction is justified by an a priori geometrical framework; i.e., 2D flows occur under
some geometrical constraint such as shallowness. However, deeper inquiry into 3D flow often finds
the presence of local 2D-like structures without such a constraint, where 2D-like behavior may be
identified by the integrability of vortex lines or vanishing local helicity. Here we propose a new
paradigm of flow structure by introducing an intermediate class, termed epi-2-dimensional flow, and
thereby build a topological bridge between 2D and 3D flows. The epi-2D property is local, and is
preserved in fluid elements obeying ideal (inviscid and barotropic) mechanics; a local epi-2D flow
may be regarded as a ‘particle’ carrying a generalized enstrophy as its charge. A finite viscosity may
cause ‘fusion’ of two epi-2D particles, generating helicity from their charges giving rise to 3D flow.

PACS numbers: 47.10.Df,45.20.Jj,03.75.Kk

Phenomenologically, 2-dimensional (2D) fluid flow is
very different from 3-dimensional (3D) flow in that the
former is less-turbulent and more capable of generating
and sustaining large-scale vortical structures [1]. This is
because the dynamics of vortices in 2D systems is con-
strained, resulting in the suppression of some essential
mechanisms of turbulence. Here we generalize by replac-
ing the usual geometrical constraint by a topological con-
straint that extracts the essential property of 2D flow.
We call such constrained flow epi-2D.

Conventionally, the 2D geometrical constraint is be-
lieved appropriate for a fluid with limited depth and slow
variation of physical quantities in the vertical direction
compared to those in the horizontal directions. However,
2D-like behavior, our epi-2D flow, may occur in flows
without being strictly 2D. For example, sometimes in 3D
systems, flow may not be totally 3D by having subdo-
mains in which the flow is 2D-like [2].

In this work we precisely formulate the concept of epi-
2D flow. The difference in the invariants of 3D and 2D
systems serves as a guide: as is well-known, the helicity
is a constant of motion in an ideal 3D flow [3, 4], while
in 2D geometry the helicity degenerates to zero, being
compensated by the enstrophy (or its generalization as
described below). Usually, these two different invariants
are regarded as attributes of different dimensionality [5];
but, we switch the viewpoints and use the invariants as
discriminants of dimensionality. Interestingly, the class
of flows that conserve (appropriately generalized) enstro-
phy is much larger than the geometrical 2D class. This
extended class is what we refer to as epi-2D. We will see
that the ‘fusion’ of two epi-2D flows may yield a 3D flow,
transmuting the corresponding enstrophies into helicity.
In fact, the epi-2D behavior is a local property, so we can
formulate a ‘particle picture’ of transmutation.

Consider first the basic equations and conservation

laws of fluid mechanics. Let M be a 3D domain con-
taining an ideal (invicid) barotropic fluid. We assume
M = T3, the 3-torus, and ignore boundary effects [6].
Denoting by ρ the mass density, V the fluid velocity, P
the pressure, the governing equations are

∂tρ = −∇ · (V ρ), (1)

∂tV = −(V · ∇)V −∇h, (2)

where ρ−1∇P = ∇h with an enthalpy h = h(ρ), The
energy of the system is

H =

∫
M

[
1

2
|V |2 + ε(ρ)

]
ρd3x, (3)

where ε(ρ) is the internal energy per unit mass and
∂(ρε)/∂ρ = h. It follows by direct calculation that the
energy H, the helicity,

C =

∫
M

V · ω d3x, (4)

with ω = ∇×V being the vorticity, and the total mass,
N =

∫
M
ρ d3x, are conserved.

The 2D geometrical reduction can be obtained as fol-
lows. Let z be a ‘perpendicular’ coordinate in the Carte-
sian (x, y, z) system and let ez = ∇z. The reduction
with ez · V = 0 and ∂z = 0 yields the 2D system on the
x-y plane (a flat torus T2). Using V = (vx, vy, 0)T and
v = (vx, vy)T, the vorticity becomes ω = ∇× V = ωez,
where ω = ∂xvy − ∂yvx. Because V · ω = 0 for this 2D
reduction, helicity conservation is now trivial: C ≡ 0.
Interestingly, however, a different invariant emerges: the
generalized enstrophy

Q =

∫
M

f(ϑ)ρ d2x, (5)

with the potential vorticity ϑ = ω/ρ, is now a constant of
motion (f being an arbitrary smooth function). It is also
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easy to show the constancy of the ‘local’ enstrophy that
is defined by replacing the domain M of the integral (5)
by an arbitrary co-moving (i.e. transported by the flow
v) sub-domain Σ(t). For the simple choice f(ϑ) = ϑ, the
local enstrophy reads Q =

∫
Σ(t)

ω d2x =
∮
∂Σ(t)

v · dx, and

the constancy of this Q is known as Kelvin’s circulation
theorem. For an incompressible flow (∇ · v = 0), we
may assume ρ = constant, and then Q has a special form∫
ω2 d2x, which is the usual enstrophy.
Our formulation of epi-2D flow begins by inquiring into

the root cause of these invariants, deemed as a reflection
of some symmetry. In particular, we replace the geomet-
rical symmetry ez· = 0 and ∂z = 0 that characterizes the
2D system by a gauge symmetry that yields an equivalent
enstrophy invariant.

The fluid equations (1)–(2) are a Hamiltonian field
theory on a phase space V of fluid variables u =
(ρ,V )T [7, 8]. The constancy of the Hamiltonian (en-
ergy) H is due to ∂tH = 0. In contrast, the conserva-
tion of the total mass N and the helicity C is indepen-
dent of the choice of Hamiltonian, implying that they
are not related to any explicit symmetry of the system.
Such constants of motion are called Casimir invariants.
A possible mechanism that yields a Casimir invariant is a
gauge symmetry in some representation of V. If there is
an underlying phase space X of fundamental variables ξ,
with the physical variables u represented by some specific
combinations of ξ where the map ξ 7→ u is redundant,
then a gauge freedom occurs and a Casimir invariant is a
Noether charge of the gauge symmetry. One example of
this is the relabeling symmetry of the Lagrangian to Eu-
lerian fluid representations [9], but for the purposes here
the relevant symmetry is that of the Clebsch parameteri-
zation [10–14], for which it was shown that N and C are
Noether charges [15].

Let X be the phase space of Clebsch parameters

ξ = (%, ϕ, p, q, r, s)T ∈ X, (6)

where each ξj (j = 1, · · · , 6) is a function on the base
space M = T3 [16]. On the space of observables (i.e.
smooth functionals on X), we define a canonical Poisson
bracket

{F,G} = 〈∂ξF, J∂ξG〉, (7)

where 〈η, ξ〉 =
∫
M
η · ξ d3x, ∂ξF is the gradient of F in

X, and J is the symplectic operator

J = Jc ⊕ Jc ⊕ Jc, Jc =

(
0 I
−I 0

)
. (8)

Given a Hamiltonian H, the adjoint representation of
Hamiltonian dynamics is dF/dt = {F,H}, which is
equivalent to Hamilton’s equation of motion

∂tξ = J∂ξH. (9)

We relate the physical quantity u ∈ V and ξ ∈ X by
ρ⇔ % and (denoting p̌ = p/%, and ř = r/%)

V ⇔ ℘ = ∇ϕ+ p̌∇q + ř∇s. (10)

Writing a vector as (10) is called the Clebsch parameteri-
zation [10–12]. The five Clebsch parameters (ϕ, p̌, q, ř, s)
are sufficient to represent every 3-vector (1-form in 3D
space) [13]. Inserting (10) into the fluid energy (3), we
obtain the Hamiltonian

H(ξ) =

∫
M

[
1

2

∣∣∣∣∇ϕ+
p

%
∇q +

r

%
∇s
∣∣∣∣2 + ε(%)

]
% d3x.

(11)
With this H, the equation of motion (9) reads [6]

∂t%+∇ · (V %) = 0,
∂tϕ+ V · ∇ϕ = h− 1

2V
2,

∂tp+∇ · (V p) = 0, ∂tq + V · ∇q = 0,
∂tr +∇ · (V r) = 0, ∂ts+ V · ∇s = 0.

(12)

The first equation of (12) is nothing but the mass con-
servation law (1). Evaluating ∂tV by inserting (10) and
using (12), we obtain (2). Hence, Hamilton’s equation (9)
with the Hamiltonian (11) describes fluid motion obeying
(1) and (2) [11, 17, 18]. The invariance of the helicity C
also follows from (12).

We examine how the 2D geometrical reduction works
in the Hamiltonian formalism. In a 2D system (M = T2),
we can parameterize a general 2D velocity as

V ⇔ ℘ = ∇ϕ+ p̌∇q, (p̌ = p/%). (13)

Here, only three Clebsch parameters ϕ, p̌, and q are suffi-
cient [13]. The vorticity is ω = (∇p̌×∇q)·ez. The helicity
cannot be defined in the 2D space. The potential vortic-
ity is a scalar ϑ = ω/%, and the generalized enstrophy
reads Q =

∫
Σ(t)

f(ω/%)% d2x, where a sub-domain Σ(t) is

moved by the group-action of etv. We can easily verify
dQ/dt = 0 by (12).

Epi-2D flow is obtained in the 3D setting with the
phase space X on the base space M = T3 by setting
r = 0 [19]. The corresponding physical fields are ρ ⇔ %
and

V ⇔ ℘ = ∇ϕ+ p̌∇q, (p̌ = p/%) . (14)

This yields a 2D-like representation, but there is a differ-
ence between (13) for 2D flow and (14) for epi-2D flow,
for the latter resides in the 3D domain T3.

Epi-2D flow is generated by the reduced Hamiltonian

H(ξ) =

∫
M

[
1

2

∣∣∣∣∇ϕ+
p

%
∇q
∣∣∣∣2 + ε(%)

]
% d3x, (15)

giving the 3D equations (1) and (2). While s does not
appear in (15), it obeys the same equation (12) but with
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V independent of s. Such a field, co-moving with the epi-
2D flow, is called a phantom field [20]. Or, s is a gauge
field with the observables blind to its initial value.

As previously remarked, (14) cannot represent an ar-
bitrary 3D flow: epi-2D flow may have a finite vorticity
ω = ∇× ℘ = ∇p̌×∇q, but its helicity density ℘ · (∇×
℘) = ∇ϕ · (∇p̌×∇q) = ∇· (ϕ∇p̌×∇q) is an exact differ-
ential, implying zero helicity, C =

∫
M
℘·(∇×℘) d3x = 0.

As for 2D, this degeneracy of the helicity is compen-
sated by a different invariant obtained by extending the
generalized enstrophy to 3D. With the phantom s,

Q :=

∫
Ω(t)

f(ϑ) %d3x, ϑ =
ω · ∇s
%

, (16)

with arbitrary f and an arbitrary co-moving 3D volume
element Ω(t) ⊂M , is seen to be conserved upon making
use of (12). If we choose s = z, then (16) reduces to
the 2D form Q =

∫
Σ(t)

f(ω/%)% d2x. In what follows, we

choose the simplest case f(ϑ) = ϑ.
Local epi-2D regions within a 3D flow can be exploited

to define particle-like behavior. With the general 3D pa-
rameterization V ⇔ ℘ = ∇ϕ + p̌∇q + ř∇s, a region in
which ř = 0 may be called an epi-2D domain. Since ř
co-moves with the fluid, every infinitesimal volume el-
ement, say Ωj(t) with elements indexed by j, included
in an epi-2D domain may be viewed as a quasiparticle,
which we call an epi-2D particle. The generalized enstro-
phy evaluated for the vorticity ω+ = ∇p̌ ×∇q in Ωj(t),
denoted by Q+(Ωj), is a constant of motion. Here the in-
dex ‘+’ is used to distinguish from counterpart domains
where p̌ = 0, for which Q−(Ωj) =

∫
Ωj(t)

ϑ−%d3x, where

ϑ− = (ω− · ∇q)/% with the vorticity ω− = ∇ř ×∇s.
We call Q±(Ωj) the charge of the epi-2D particle Ωj . It

is remarkable that both Q+ and Q− are invariant even in
3D flows. Both charges essentially measure the ‘circula-
tions’ of the decomposed components of the flow (cf. the
comment following (5)). In fact, Kelvin’s circulation the-
orem applies in general 3D flows. The merit of the use of
the charges Q±, in comparison with the conventional cir-
culation, is in that they can delineate the local flow struc-
ture. As far as a particle (volume element) carries only
Q+ or Q−, it is epi-2D. However, when the vorticity is in
a mixed state, i.e., ω = ω++ω− = ∇p̌×∇q+∇ř×∇s, the
particle becomes 3D, and then, helicity is created from
the charges Q+ and Q−. Indeed, the integrands of Q+

and Q− (the charge densities) are, respectively,

Q+ = (∇p̌×∇q) · ∇s, Q− = (∇ř ×∇s) · ∇q,

while the integrand of C (the helicity density) is

C = ℘ · (∇× ℘) = řQ+ + p̌Q− + Cex, (17)

where Cex = ∇ϕ · (∇p̌ × ∇q + ∇ř × ∇s) is the exact
part of the helicity density. The residual helicity density
Cr = C − Cex = řQ+ + p̌Q− describes the coupling of

FIG. 1: An epi-2D flow given by V+. (Left) The integrable
vortex lines. (Right) Contours of Q+ and the flow vector on
the surface y = 0 indicated by the gray cross-section in the
left figure (color code ranges from orange= 2 to green= −2).

epi-2D particles; evidently, either ř = 0 or p̌ = 0 causes
Cr to vanish. Conversely, the combination of two charges
Q+ and Q− yields Cr. Therefore, Cr = 0 can be used as
an alternative definition of epi-2D flow.

FIG. 2: The combination V = V+ + V− yields a 3D
flow. (Left) The vortex lines become chaotic (non-integrable).
(Right) Contours of Cr together with the surface-aligned com-
ponent of the flow vector on the surface y = 0 indicated by
the gray cross-section in the left figure (color code ranges from
blue= 5 to yellow= −1).

We give an illustrative example to visualize epi-2D flow
and its transition to 3D. Let (x, y, z) be Cartesian coor-
dinates, and V = αV+ + βV− with

V+ =

 b sin y − c cos z
0

a sinx

 , V− =

 0
c sin z − a cosx
−b cos y

 ,

where α, β, a, b and c are arbitrary real constants, and the
vorticities satisfy ω± = ∇×V± = V∓. When α = β = 1,
V is the famous ABC flow [21], satisfying ∇ × V = V .
We may cast V into the Clebsch form (10) with ϕ = (αa sinx− βb cos y)z,

p̌ = α[b sin y − c cos z − (a cosx)z], q = x,
ř = β[c sin z − a cosx− (b sin y)z], s = y.

(18)

When α = 1 and β = 0, we obtain an epi-2D flow V+ with
Q+ = c sin z − a cosx. The co-presence of V+ and V−
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TABLE I: Topological classification of flows. V : 3D flow,
Vr = V −∇ϕ: solenoidal component, Q±: generalized enstro-
phy density, Q± =

∫
Ω(t)

Q± d3x: generalized enstrophy, C :

helicity density, Cr: residual helicity density, C =
∫
M

Cr d3x:

helicity. Notice that the local integral
∫

Ω(t)
Cr d3x is not a

constant of motion.

classification representation invariants
vorticity-free
(∇× V = 0)

V = ∇ϕ C = 0
Q = 0

helicity-free
(V · ∇ × V = 0)

V = p̌∇q C = 0
Q±

epi-2D
(Vr · ∇ × Vr = 0)

V = ∇ϕ+ p̌∇q Cr = 0
Q±

general V = ∇ϕ+ p̌∇q + ř∇s C
Q±

creates a 3D flow; when α = β = 1, V has the residual
helicity density Cr = rQ+ + pQ−. In Fig. 1, we show the
structure of V+ and the distribution of Q+ on a surface
y = 0. Figure 2 depicts the 3D flow V = V+ + V− and
Cr on a cross-section of y = 0.

Table I summarizes our newly proposed classification
of flows. The smallest set hosts vorticity-free, potential
flow (or lamellar field [22]). The next of the hierarchy
includes ‘weighted’ potential flows (or complex lamellar
field) that have vorticity but still zero helicity density. A
further generalization yields the epi-2D flows that have
only exact helicity density (hence, Cr = 0). The epi-2D
class subsumes conventional 2D systems where we may
take s = z (the perpendicular coordinate); this is pos-
sible since ω is aligned to the fixed vector ez [23]. As
the generalization of the a priori base space of a 2D sys-
tem, an epi-2D flow has intrinsic vortex surfaces (cf. [24]).
While the direction of ω changes dynamically, the vortex
lines remain integrable, keeping the similarity to 2D flows
(cf. [2]). Contrary to 2D flow, however, epi-2D flow allows
for vortex stretching, which may make the epi-2D parti-
cle thinner (thus, the possibility of singularity generation
is not precluded). A general 3D flow may be viewed as a
mixed state of epi-2D particles, with each particle carry-
ing a charge of Q+ or Q− [25]. When particles with Q+

and Q− occupy a same volume element, they produce a
helicity to make the volume 3D (cf. [26] for experimental
visualization of knotted vortices). Otherwise, the volume
is epi-2D. The epi-2D property is topologically invariant;
i.e., an epi-2D volume remains so under ideal fluid mo-
tion. If some non-ideal process, such as vortex reconnec-
tion, occurs [27–29], however, two epi-2D particles can
fuse to generate helicity.

The class of locally epi-2D flows is capable of describing
strongly heterogeneous 3D vortex dynamics where the
helicity density is localized in narrow subdomain (such
local structures often manifest as coherent vortices, and
are called worms) [30]. We note that vortex stretching

can happen in any of these subdomains.
In conclusion, the newly formulated epi-2D vector

fields are useful for delineating between mixed states of
order and disorder, which indeed appear as intermit-
tency, coherent vortices, or various local structures in
fluid systems. Previously, the framework of 2D geometry
was the only one for describing simple (integrable) vor-
tex structures and discussing their moderate (or ordered)
dynamics. However, such structures/dynamics can man-
ifest themselves without this a priori geometrical con-
straint; they are more flexible and ubiquitous in general
3D space, as we do observe in actual phenomena. The
epi-2D class abstracts the topological characteristics of
the usual 2D flows; it persists under deformations by
ideal fluid motion (including stretching); being a local
property, it is suitable for characterizing the mixture of
epi-2D and true 3D dynamics; it bridges 2D and 3D by
elucidating how 3D flow is created from the epi-2D proto-
type, or conversely, how epi-2D degenerates to 2D. Here
we discussed fluid mechanics, but the paradigm of Ta-
ble I for 3D vectors applies to a variety of fields, including
magnetic fields [31], optical vortices [32], as well as chiral
charge-density waves [33].
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