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The defining property of chimera states is the coexistence of coherent and incoherent domains in
symmetric coupled systems. The recent realization that such states might be common in oscillator
networks raises the question of whether an analogous phenomenon can occur in continuous media.
Here, we show that chimera states can exist in continuous systems even when the coupling is strictly
local, as in many fluid and pattern forming media. Using the complex Ginzburg-Landau equation
as a model system, we characterize chimera states consisting of a coherent domain of a frozen spiral
structure and an incoherent domain of amplitude turbulence. We show that in this case, in contrast
with discrete network systems, fluctuations in the local coupling field play a crucial role in limiting
the coherent regions. We suggest these findings shed light on new possible forms of coexisting of
order and disorder in fluid systems.

Chimera states are spatiotemporal patterns resulting
from symmetry breaking. The discovery of such states
in oscillator networks demonstrated that even in sys-
tems of identically-coupled identical oscillators, mutu-
ally synchronized oscillators can coexist with desynchro-
nized ones [1]. This coexistence is particularly remark-
able because the coherent and incoherent domains are
bidirectionally coupled: it is counterintuitive that the
state would be persistent despite the perturbations that
desynchronized oscillators unavoidably exert on synchro-
nized ones, and vice versa. Chimera states were initially
identified in networks of phase oscillators with nonlo-
cal coupling [1, 2], but they have been recently demon-
strated for a wide range of oscillator networks [3]. This
includes networks with couplings that have delays [4, 5],
inertia [6, 7], time dependence or noise [8, 9], and are
global [10, 11] or local [12–15]; it also includes networks
of phase-amplitude oscillators [16, 17] and chaotic oscil-
lators [18, 19]. Moreover, chimera states have been ob-
served experimentally in various systems, including net-
works of optical [20], chemical [21], and mechanical [22]
oscillators. Yet, with very few exceptions [23, 24], previ-
ous work has focused exclusively on chimeras in (discrete)
network systems. It is thus natural to ask the extent to
which chimeras states can exist and have salient proper-
ties in continuous systems.

We first note that continuum systems can exhibit anal-
ogous examples of coexisting order and disorder in ho-
mogenous media, but the connection between these phe-
nomena and chimera states has remained largely unap-
preciated. Perhaps the most significant examples occur
in fluid mechanics. Consider, for instance, a Taylor-
Couette flow, where the fluid is constrained to the space
between two rotating cylinders. As the rate of rotation
increases the dynamics change from an orderly laminar
regime to a turbulent one through a series of intermediate
dynamical states [25], including a spiral turbulence flow
regime characterized by a persistent spiraling region of

turbulent flow which coexists with a domain of laminar
flow [26]. The spiral turbulence in this system is thus a
fluid counterpart of a chimera state. Related examples
can be found in parametrically forced Faraday waves [27],
where fluid driven by an oscillating support can form co-
existing domains of regular stripes and chaotic surface
waves, and in the spatiotemporal intermittency regime
of Rayleigh-Bénard convection [28]. A key difference in
continuous systems is in the nature of the coupling, which
often consists of a strictly local (differential) component
that acts in the limit of small spatial scales. Modeling
chimera states in continuous systems and establishing
that they can exist in the absence of any nonlocal cou-
pling thus remains an important outstanding problem in
this field. Although working directly with fluid equations
is possible in principle, to address this problem it is more
enlightening to employ simpler model equations.

In this Letter, we report on chimera states in the
locally-coupled complex Ginzburg-Landau (CGL) equa-
tion in two spatial dimensions. These states, which we
refer to as frozen vortex chimeras, correspond to coexist-
ing domains of frozen spirals and amplitude turbulence
and are characterized in a previously under-explored pa-
rameter regime of the system. They are distinct from
spiral wave chimeras previously identified in discrete sys-
tems [29–31] in that the core of the spirals is coherent
and the media lose coherence far from the core, and
not the other way around. We analyze these states by
introducing a local coupling field generalization of the
Kuramoto-Battogtokh approach [1]. Crucially, we show
that fluctuations in the coupling field cannot be neglected
for such locally coupled continuous systems, which set
them fundamentally apart from previously studied net-
work analogs.

In the study of pattern formation, the CGL equation

∂A

∂t
= A+ (1 + ic1)∇2A− (1− ic3)|A|2A (1)

describes the universal behavior of a homogenous oscil-
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FIG. 1. Coexistence of coherent spirals and amplitude turbu-
lence in the CGL system (1): (a) with c1 = 1.5 and c3 = 0.77
and random initial conditions after a time t = 104; (b) with
c1 = 2.0 and c3 = 0.85 and a spiral initial condition after a
time t = 104. The phase θ ≡ arg(A) is depicted in the upper
left and the amplitude r ≡ |A| in the lower right.

latory medium in the vicinity of a supercritical Hopf bi-
furcation; modeling applications of this equation include
examples of Rayleigh-Bénard convection [32–34] and the
Belousov-Zhabotinsky (BZ) reaction [35, 36]. The CGL
system can exhibit a variety of dynamical phases de-
pending on the parameters c1 and c3 [37]. As in other
nonlinear wave systems [38], these phases include differ-
ent coherent and localized structures. The most disor-
dered phase is that of amplitude or defect turbulence,
with a disordered and finite density of defects where
|A| reaches zero (and the phase of A is undefined) at
a point. A second important phase consists of frozen spi-
ral structures, where |A| becomes time-independent near
the spiral core and the phase of A has periodic spiral-
ing structures. In particular, states with slowly evolving
domains of frozen spirals, so-called vortex glass states,
have attracted significant attention [39–42]. One rele-
vant parameter regime previously studied corresponds
to c1 = 2.0 and c3 < 0.75, in which the frozen (anti)-
spirals [43] can nucleate out of amplitude turbulence and
grow to a limited size [45]. Of special interest to our
research question would be a parameter regime that sup-
ports frozen spiral states in a turbulent sea but with no
growth and no spiral nucleation over relevant timescales.

Figure 1 shows results of our simulations of the CGL
system (1). A regime in which coherent spirals have nu-
cleated out of the amplitude turbulence and grown to
their maximum size, with patches of residual amplitude
turbulence between them, is shown in Fig. 1(a). As c1
and c3 are increased, on the other hand, the average time
Tnuc required for spiral nucleation in a simulation area L2

starting from an initial state of full amplitude turbulence
rises sharply. For c1 = 2.0 and c3 = 0.85, for example,
no spirals nucleate out of initial amplitude turbulence for
times up to t = 106 (as verified for ten different simula-
tion runs). However, spirals and amplitude turbulence
do still coexist in this new regime; Fig. 1(b) shows a
frozen vortex chimera after t = 104, which was obtain
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FIG. 2. Time-averaged angular frequency ωav ≡ 〈dθdt 〉 for the
frozen vortex chimera in Fig. 1(b), where the arrow indicates
the diameter 2ρ of the coherent region. The mean frequency
in the coherent region is around 0.15, while the frequency is
significantly higher (> 0.40) in the incoherent region. The
distinction between the regions does not depend sensitively
on the averaging interval (here taken to be 0 < t < 104). For
an animation of the time evolution of this chimera state, see
Supplemental Material [47].

with an initial condition consisting of a single spiral that
nucleated for smaller c3. These numerical simulations are
discrete approximations of the continuous CGL system of
interest. In all simulations the system is taken to have
linear size L = 384π and is integrated using a pseudospec-
tral algorithm with N = 1536 modes in each dimension
[46]. We carried out a detailed study of these results with
increasingly finer spatial grids and time steps (see Sup-
plemental Material, Sec. S1 [47]). Crucially, we employ
everywhere sufficiently fine spatial grids and time steps
to ensure convergence to the continuum limit. These
long-lived spatiotemporal patterns are continuous-media
chimera states exhibiting a sizable coherent region (the
spiral) and a sizable incoherent region (the amplitude
turbulence phase).

Figure 2 shows the time-averaged frequency as a func-
tion of position in a frozen vortex chimera with c1 = 2.0
and c3 = 0.85. At the center there is a coherent domain,
which is a frozen spiral of radius ρ with low mean angular
frequency Ω, whereas the outer domain is occupied by an
incoherent region, which has higher mean frequency and
exhibits amplitude turbulence. The quantities ρ and Ω
establish the natural length and time scales of the spi-
ral. We then formally define a frozen vortex chimera as
a state in which there exists a spiral (of area πρ2) and
a surrounding neighborhood of amplitude turbulence (of
area comparable to πρ2) that persists without change for
a time interval much longer than the spiral oscillation
period of 2π/Ω.

We now consider the parameter range over which such
frozen vortex chimeras exist as both c3 and c1 are var-
ied. These chimeras are intermediate states between the
vortex glass phase and the amplitude turbulence phase,
as shown in Fig. 3(a). We first note that if a spiral
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is to coexist with amplitude turbulence for many pe-
riods of oscillation and qualify as a chimera, then: 1)
the spiral must persists in its environment (which sets
the boundary with the amplitude turbulence phase) and
2) rate of spiral nucleation in its neighborhood must be
small compared to its angular frequency Ω (which sets
the boundary with the vortex glass phase). To quan-

tify the vortex glass transition, we define η ≡ L2

πρ2
Tnuc

2π/Ω ,

which is the nucleation time Tnuc properly normalized
by the spiral period 2π/Ω and the normalized neighbor-
hood area πρ2/L2. Our definition of a frozen vortex
chimera requires η � 1, while states with faster spiral
nucleation, and hence smaller η, are considered a vortex
glass. Systematic simulations along the line c1 = 2.0 re-
vealed that frozen vortex chimeras exist up to values of
c3 <∼ 0.86. Figure 3(b) shows a log-log plot of the normal-
ized nucleation time η versus 0.86− c3 for c1 = 2.0. The
transition boundary between vortex glasses and frozen
vortex chimeras thus does not depend sensitively on the
threshold for η, since the increase in η is extremely stiff
as c3 is increased, as demonstrated by the contour lines
in Fig. 3(a) and the steep slope (approximately −10) in
Fig. 3(b). Like other chimera states [48], frozen vortex
chimeras are transient states. The mechanism of their
collapse into coherent states is through the nucleation
of new spirals in the neighborhood of the coherent do-
main. This process can take an exceedingly long amount
of time. For example, the scaling in Fig. 3(b) suggests
that the lifetime of the frozen vortex chimera in Fig. 2 is
over a billion spiral oscillation periods.

It follows from Fig. 3(a) that the parameter regime
where frozen vortex chimeras prevail is relevant for ex-
perimentally accessible systems such as the BZ reaction
system [35, 36]. In models of the BZ system, the CGL
parameter c1 is determined primarily by species diffu-
sion coefficients, while the parameter c3 is determined by
reaction rates and concentrations. By varying sulfuric
acid concentrations, for example, the parameter regime
c1 = 1.4 and 0.5 < c3 < 0.7 just below the transition be-
tween vortex glasses and frozen vortex chimeras (around
c3 ≈ 0.8 in Fig. 3) has been experimentally explored [36].
This provides evidence that frozen vortex chimeras can
be realized experimentally in much the same fashion as
in our numerical procedure. One important experimen-
tal consideration is the impact of imperfect experimental
conditions—the basin of attraction of the frozen vortex
chimeras must not be inaccessibly small if they are to be
found in reality. To investigate this question, we have
randomly perturbed the chimera state and observed its
subsequent recovery or destruction (see Supplementary
Materials, Sec. S2 [47]). So long as perturbations are not
too large, the system is attracted back towards the frozen
vortex chimera, thus providing evidence that with suffi-
ciently controlled experimental conditions, frozen vortex
chimeras should be experimentally accessible.
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FIG. 3. (a) Diagram of dynamical phases of the CGL sys-
tem, where the frozen vortex chimeras (FVC), vortex glass
(VG), and amplitude turbulence (AT) occupy the intermedi-
ate, small, and large c3 regions, respectively. The boundary
between VG and FVC was determined by calculating η from
five realizations of spiral nucleation from an amplitude tur-
bulence initial state; the dashed line shows a modest change
in this boundary as the threshold η changes by an order of
magnitude around 103 (continuous line). The boundary be-
tween FVC and AT was determined by adiabatically varying
c1 and c3 to move a spiral initial condition past the point of
spiral destabilization. (b) Log-log plot of η for c1 = 2.0 as a
function of 0.86 − c3 corresponding to the white line in (a).
Error bars show two times the standard deviation from 100
realizations, and the line marks the linear fit.

To analyze such chimera states, we employ a local cou-
pling field approach similar to the one introduced in Ref.
[1]. Local order parameters have also recently found ap-
plication in the synchronization complex networks [49].
Rather than relying on the discrete local coupling fields
used there, we derive the appropriate local coupling field
in the continuous case of Eq. (1) by first differentiating
A = reiθ to obtain

dθ

dt
=

1

2i

(
1

A

∂A

∂t
− 1

A∗
∂A∗

∂t

)
, (2)

where ∗ denotes complex conjugation. Using
Eq. (1) in Eq. (2), we then identify the cou-
pling terms as those involving spatial derivatives,

namely

√
1+c21
2ir

(
ei(α−θ)∇2A− e−i(α−θ)∇2A∗

)
, where α ≡

arctan c1. To obtain evolution equations for r and θ
analogous to those for discrete systems, it follows that
the local coupling field should be defined as ReiΘ ≡√

1+c21
r ∇2A. Indeed, using this coupling field, Eq. (1)

can be expressed as

dθ

dt
= c3r

2 +R sin(Θ− θ + α), (3)

dr

dt
= r(1− r2) +Rr cos(Θ− θ + α), (4)

where the main difference from discrete phase oscillators
is that the frequency term in the θ equation is a function
of r and the coupling field is differential in r and θ.

Assuming a coupling field with time-independent R(x)
and Θ(x, t) = Ωt + Φ(x) with Ω and Φ(x) time-
independent, a coherent solution is one with dr/dt = 0
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FIG. 4. (a) Time-averaged local coupling field Rav for the conditions in Fig. 2 as a function of: (a) the two spatial coordinates;
(b) the time-averaged amplitude rav for points in the coherent region (cyan dots), halo region (green dots), and remaining
incoherent region (red dots); and (c) the x coordinate along the line y = 0 (orange dots). The inset in (b) magnifies the box,
which includes all the points in the incoherent region. In (c) we also show the fluctuations σR of R (blue dots). The dotted
lines in (a) and (c) delimitate the coherent domain in Fig. 2. The dashed lines in (b) mark the solution of Eq. (5) and in (c)
mark the critical value R = Rc above which Eq. (5) has (real) solutions.

and dθ/dt = Ω. Noting that R2 = R2 sin2(Θ − θ +
α) +R2 cos2(Θ− θ + α) and solving Eqs. (3)-(4) for the
trigonometric functions, the coherent solutions must sat-
isfy R2 = (c3r

2−Ω)2 +(1−r2)2. The amplitudes of these
coherent solutions are

r =

√
1 + c3Ω±

√
(1 + c23)R2 − (c3 − Ω)2

1 + c23
, (5)

where, given that R is real and positive, the condition

for a (real) solution to exist is R ≥ Rc ≡ |c3−Ω|√
1+c23

.

Figure 4(a) shows the time-averaged local coupling
field Rav of a frozen vortex chimera. As with other
chimera states considered in the literature, we see that
the coupling field amplitude is sufficiently large in the co-
herent domain to induce synchronization while it is too
small to do so in the incoherent domain (with the excep-
tion of the red halo region surrounding the coherent do-
main). Figure 4(b) shows Rav and the time-averaged am-
plitude rav, where it is clear that the solutions to Eq. (5)
(dashed lines) correspond to the coherent domain (cyan
dots). Note, however, that a portion of the desynchro-
nized domain (green dots) has Rav larger (not smaller)
than the corresponding solutions of Eq. (5), i.e., it sat-
isfies Rav > Rc = 0.54. This portion corresponds to the
red halo surrounding the coherent domain in Fig. 4(a).
To understand why this halo region does not synchronize
with the coherent domain, we must consider the fluctu-
ations of the local coupling field. These fluctuations are
quantified as the standard deviation σR calculated over
the time series of R and are shown in Fig. 4(c).

A distinguishing property of the frozen vortex chimeras
apparent in Fig. 4(c) is that, while negligible in the co-
herent domain, the fluctuations of the local coupling field
rise in the halo region and saturate to large values in
the amplitude turbulent domain. In the discrete nonlo-
cal coupling scenario considered in the original formula-
tion of the self-consistent mean-field approach [1], where
many oscillators contribute to the mean field (in fact all

of those for which the coupling kernel is not small), fluc-
tuations in the mean-field solution are negligible in both
the coherent and the incoherent domains. Incidentally,
this underlies the increasing stability of chimera states
with increasing system size in discrete network systems
[48], rendering the thermodynamic limit of such systems
sharply different from the continuous problem considered
here. We argue that the origin of the difference in the
nature of the fluctuations derives from the fact that the
CGL system (1) is continuous and the coupling is local.
Thus, the portion of the medium contributing to the local
coupling field is not large enough to average out fluctua-
tions.

We propose that the loss of synchrony across the halo
region is driven by these enhanced fluctuations. The me-
dia in the halo is inclined to synchronize with the spiral
because of the large local coupling field, but the large
fluctuations present in the amplitude turbulent domain
diffuse into the halo region and frequently disrupt this
synchronization. A balance is achieved in which the inner
spiral is shielded from the fluctuations in the amplitude
turbulent domain by the halo, where the fluctuations de-
cay and synchronization is repeatedly achieved and lost.
To test this mechanism, we performed systematic simu-
lations in which we directly modulate the fluctuations in
the amplitude turbulent portion of the media (see Sup-
plemental Materials, Sec. S3 [47]). Increasing the scale of
the fluctuations causes the spiral to shrink in size, while
decreasing them causes the spiral to grow. These simula-
tions thus support the proposed fluctuation-based mech-
anism limiting the growth of the coherent spiral.

In summary, we have studied a novel chimera state
appearing in the continuous locally-coupled complex
Ginzburg-Landau equation. We noted that the nucle-
ation of spiral structures out of an amplitude turbulent
domain becomes negligibly small for a range of intermedi-
ate values of the parameter c3, and thus that the chimeras
persist without change for long times. In contrast to the
fluctuations in chimera states in nonlocally coupled dis-
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crete systems, fluctuations in the local coupling field in
these chimera states cannot be neglected [50]. We conjec-
ture that such fluctuations are responsible for the break-
down of coherence at the boundary between the coherent
and incoherent domains. This appears to reflect a fun-
damental difference between the mechanism underlying
the chimeras investigated here and those considered pre-
viously in nonlocal variants of the CGL equation [51].
This mechanism provides insights into experimental ob-
servations of coexisting order and disorder in continuous
fluid media.
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