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The ionization rate of an atom in a strong optical field can be resonantly enhanced by the pres-
ence of long-living atomic levels (so-called Freeman resonances). This process is most prominent in
the multiphoton ionization regime meaning that ionization event takes many optical cycles. Never-
theless, here we show that these resonances can lead to fast subcycle-scale plasma buildup at the
resonant values of the intensity in the pump pulse. The fast buildup can break the cycle-to-cycle
symmetry of the ionization process, resulting in generation of persistent macroscopic plasma cur-
rents which remain after the end of the pulse. This, in turn, gives rise to a broadband radiation of
unusual spectral structure, forming a comb from terahertz (THz) to visible. This radiation contains
fingerprints of the attosecond electronic dynamics in Rydberg states during ionization.

PACS numbers: 32.80.Rm,42.65.Ky,42.50.Hz

Dynamics of atomic photoionization is central to many
recent advances in optics and in physics in general, such
as attosecond physics and attosecond metrology via high
harmonic generation (HHG) which allowed generation of
coherent radiation at frequencies up to many hundreds of
eV, dramatically extending the range where coherent ul-
trashort pulses are available [1, 2]. Ionization-induced dy-
namics can also be used to generate frequencies in the op-
posite — low-frequency — range, namely in the terahertz
(THz) [3–7]. Radiation at THz frequencies can be gen-
erated in filaments via wake fields (longitudinal plasma
oscillations) [8] or via Cherenkov radiation [9]. However,
a much more efficient mechanism is based on the fast
step-like tunnel ionization process in strong fields, re-
sulting in formation of persistent macroscopic currents
[3–7, 10]. For this, one needs to have asymmetric inci-
dent waveforms (e.g. using two- or multi- color fields)
[4, 5, 10, 11], so that the macroscopic currents created
by the positive field half-cycles are not compensated by
the currents created during the negative half-cycles. As
a result, persistent current arises and does not disappear
after the end of the pulse. The step-like nature of tun-
nel ionization is of critical importance for this method:
in the deep multiphoton regime, as the sub-cycle steps in
the ionization dynamics gradually disappear, the method
appears to fail [12].

Here we use the so-called Freeman resonances, arising
in the multiphoton regime [13], to create a new source of
such asymmetry. Freeman resonances appear when the
excited atomic states are Stark-shifted by the strong laser
field in and out of n-photon resonances. In that case, the
population transfer in the atom is dominated by two ma-

jor competing mechanisms: resonantly enhanced ioniza-
tion by direct electronic transitions from the ground state
into the continuum, and population trapping in high-
lying, laser-dressed and strongly distorted states [14].
The latter can be viewed as the extension of the Kramers-
Henneberger concept [15, 16] to the Rydberg manifold
[17–19].

In this letter we show that Freeman resonances pro-
duce radiation in a broad frequency range and point out
that this radiation contains information about the ion-
ization dynamics. Namely, we show that Freeman res-
onances are able to produce rather short spikes of ion-
ization, with dynamics even on a sub-cycle level. This
sub-cycle dynamics breaks the symmetry of the ioniza-
tion process, leading to the generation of a new comb-like
structure in a broad frequency range from THz to visi-
ble. The comb-like structure is a result of interference
from different ionization events. The same multi-event
structure contains signatures of the electron dynamics
“half-way” to the continuum, in particular, of “frustrated
tunneling” [19].

First, we will develop an “adiabatic” approach to the
problem, which allows to describe the underlying physics
qualitatively. Next, we confirm our model with the di-
rect solution of the time-dependent Schrödinger equation
(TDSE).

In the adiabatic regime, we consider the ionization
dynamics in a long pulse with a slowly varying enve-
lope. To develop the adiabatic approach, we first find the
ionization rate using the non-Hermitian Floquet frame-
work for monochromatic optical fields in the multipho-
ton regime [20, 21]. That is, we assume a strictly peri-
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FIG. 1. (a) Ionization rate in dependence of the pump intensity; peaks in ionization rate are Freeman resonances. (b) Intensity
(red) and the corresponding ionization rate (blue) generated by a long pulse of the form described in text, with the wavelength
800 nm, duration 240 fs and peak intensity 17 TW/cm2. (c,d) Macroscopic free electron current for 17 TW/cm2 (c) and 23
TW/cm2 (d); other parameters as in (b); For the case of 17 TW/cm2 a persistent current after the field passage is visible. (e)
The spectra of the corresponding radiation Ef given by Eq. (2) for the currents shown in (c).

odic field E = E0 cos(ω0t) with ω0 = 0.057 a.u., corre-
sponding to a wavelength of 800 nm. Then, we search
for the Floquet resonances in the eigenvalue problem
(H − i∂t)ψ(x, t) = εαψ(x, t), where H describes the sys-
tem Hamiltonian, εα is the complex quasi-energy such
that the Floquet eigenfunctions Ψ = e−iεαψ are quasi-
periodic in time: Ψ(x, t+T ) = e−εαTΨ(x, t), T = 2π/ω0.
The ionization rate is determined by the inverse lifetime
of the resonances Γα = −2 Im εα [22]. We assume that
wavefunction dynamics is governed by a 1-dimensional
Hamiltonian in velocity gauge,

H = −1

2
∂xx −

1√
x2 + a2

− iA(t)∂x. (1)

As the considered wavelengths and intensities are well
within the validity range of the dipole approximation,
this 1D Hamiltonian with a soft-core Coulomb potential
[24] is equivalent to the standard one (p − A)2 + V and
reproduces the essential features of radiation and photo-
electron spectra in intense laser-matter interaction [23].
Choosing a =

√
2 a. u. allows to reproduce the ionization

energy of atomic hydrogen (Ip = 13.6 eV) [21].
Separating the time scales of the slow envelope and the

fast carrier oscillation allows us to apply the adiabatic
theorem of quantum mechanics [25], which implies that
at each instant of time, the atom remains in the Floquet
resonance which is adiabatically connected to the ground
state. Also, in this approximation, the population of in-
termediate levels is negligible and the ionization yield is
completely determined by the imaginary part of the Flo-
quet quasi-energy. Numerically, the Floquet eigenprob-
lem was solved by discretizing it in a sufficiently large
numerical box (we used 200 au), which supports the rel-
evant resonant states.

Dependence of the ionization rate Γ0[I] of the ground-

state resonance on the intensity I = E2
0/(8πα) (with

the fine-structure constant α = 1/137) is shown in
Fig. 1(a), exhibiting several narrow resonances. In
Fig. 1(b) we show the pulse of the shape E(t) =

E0 sin (ω0t) sin (πt/T )
2

with T = 2π/ω0 being the pulse
duration and E0 the peak field strength (red line in
Fig. 1(b) shows the pulse envelope). The correspond-
ing ionization rate is shown in Fig. 1(b) by a blue
curve. One can see that when the intensity of the pulse,
which changes in time, passes the resonant intensity
(e.g. around 15 TW/cm2, which corresponds to a 9-
photon resonance (13.95 eV) between the ground state
and the AC-Stark shifted 7th excited state), sharp spikes
in the ionization rate take place, which correspond to
the Freeman resonances. The corresponding plasma cur-
rents are shown in Fig. 1(c,d) and are obtained from the
Drude model without damping via ∂tJ(t) = ρ(t)E(t),
with a plasma density ρ governed by a rate equation
∂tρ = Γ0[I(t)](ρ0 − ρ). The current contains fast os-
cillations reflecting electron dynamics at the frequency
ω0, but the important point is that after the pulse the
current does not return to zero as would have happened
if the resonances were not present.

It is also known that the change of the macroscopic
free current J due to ionization can produce radiation
(Brunel harmonics) [5, 10, 12, 26–28]. More specifically, if
we assume that plasma arises in a small spatial spot, the
corresponding field at the observer point will be governed
by the expression:

Ef (t) = g
dJ(t)

dt
= g

d2P (t)

dt2
, (2)

where g is an constant depending on the observation
point. We also introduced formally the corresponding
polarization as P (t) =

∫ t
J(t′)dt′.
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FIG. 2. The generated radiation and its spectrum in depen-
dence on the pulse intensity for the parameters of the Fig. 1,
assuming the adiabatic procedure as well as the direct solu-
tion of the TDSE. (a,b) Fraction of ionized electrons ρ/ρ0 (red
curves) and the low frequency energy (integrated from 0 to
100 THz) (blue curves) for the case of adiabatic theory (a)
and by direct solution of the TDSE (b). (c,d) Corresponding
spectra in dependence of intensity for the adiabatic theory (c)
and by direct solution of the TDSE (d).

As mentioned above, ionization creates harmonics of
the pump field only in the case of sub-cycle ionization
dynamics. If the ionization event is much slower than
the optical cycle (typically associated with the multipho-
ton ionization regime), the nonlinearity is “too slow” to
create harmonics [12]. From Eq. (2) it follows that if a
persistent current arises (that is, if J(t =∞) 6= 0), there
must be a slow component in J which rises on the time
scale of the pulse duration. This leads also to the pres-
ence of a slow component of Ef (t), i.e., a 0th harmonic
in Ef (ω) = F [Ef (t)], where F [·] is the Fourier trans-
form. To obtain such persistent currents, certain type of
symmetry breaking is necessary: otherwise, the number
of electrons going in one direction is exactly the same as
the number going in the opposite direction. In the tunnel
ionization regime, if the field shape is asymmetric (as, for
example, in two-color pulses), the temporal asymmetry
of the field waveforms leads to spatial asymmetry of the
current and thus to generation of macroscopic persistent
currents as well as generation of 0-th harmonic of the
pump.

Here, as we observe in Fig. 1(c,d), the mechanism lead-
ing to persistent currents should be closely related to the
Freeman resonances. As explained above, this current
should also generate low-frequency radiation. By plot-
ting Ef (ω) defined by Eq. (2) in Fig. 1(e) we see that
indeed low-frequency components arise. Remarkably, the
spectrum contains not only well defined harmonics of the
pump, but also a comb of other harmonics in the broad
range up to ω ∼ 5 fs−1, which corresponds to the visible
range. The comb line-to-line distance corresponds to the
inverse distance in time between the ionization peaks in
Fig. 1(b). The main peak coincides with the central fre-
quency ω0 of the exciting pulse and corresponds to the
motion of free electrons. For comparison, in Fig. 1(d,e)
the current and the corresponding response spectrum are
shown for the intensity of 23 TW/cm2 (red line). In this

case, the Freeman resonances are not excited and the re-
sulting radiation at low frequencies is several orders of
magnitude smaller. The structure of the spectrum is the
same for other intensities as shown in Fig. 2(c).
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FIG. 3. Comparison of the solution of the TDSE with the
adiabatic procedure. (a,b) Electron energy distributions for
electrons traveling to the right (blue curve) and to the left (red
curve) calculated with TDSE for a pulse with the intensity 45
TW/cm2 and pulse duration 425.6 fs (a) and the intensity
50 TW/cm2 and pulse duration 266.0 fs (b). (c) Ionization
rate calculated using Floquet theory vs. time. (d,e) The
XFROG diagram of the radiation Ef (t) calculated according
Eq. (2) (colorscale) and the corresponding polarization P (t)
(black line) according to the adiabatic theory and for TDSE
calculation. Vertical black lines indicate the “center” of the
first resonance and the point in time symmetric in respect to
the pulse center.

The figure which demonstrates the dependence of the
corresponding comb on the pulse intensity is presented in
Fig. 2. One can clearly see the connection between the
excitation of Freeman resonances and the generation of a
broadband spectrum. Both the broadband spectrum and
the presence of low frequency harmonics indicate that
electron ionization dynamics contains a sub-cycle time-
scale component, even though we are in the multiphoton
ionization regime of the Keldysh parameter γ � 1. The
Freeman resonances are so sharp, as a function of the
laser intensity, that even the slowly-varying field intensity
(in our adiabatic picture) passes these resonances very
quickly, in less than one optical cycle. This breaks the
symmetry and leads to formation of persistent currents.

Formally, as we approach the single-cycle timescale,
the adiabatic approximation can no longer be used.
Namely, as the ionization rate exhibits very narrow peaks



4

of width ∆I, they are passed in less than an optical cy-
cle if ∆I/(dI/dt) < T . This involves a certain trade-off
between adiabatic and non-adiabatic intensity evolution.
It is therefore necessary to compare our adiabatic model
with direct solutions of the full TDSE

i∂tψ(x, t) = Hψ(x, t) (3)

with the same Hamiltonian Eq. (1). The comparison for
the pulse duration 240 fs, as a function of the pulse peak
intensity, is shown in Fig. 2. The spectra generated by
pulses with different intensities (and same duration) are
shown both for the adiabatic approach [Fig. 2(c)] and
for the exact simulation [Fig. 2(d)]. The low-frequency
part of the radiation integrated over the range between 0
and 100 THz is shown for both cases in Fig. 2(a,b) (blue
lines). Red lines in Fig. 2(a,b) show the fraction of ion-
ized electrons according to the Floquet theory. One can
see that, although the dynamics has some differences, it
also has much in common. E. g., in the adiabatic case,
the Freeman resonance at around 15 TW/cm2 plays ob-
viously an important role. The influence of this peak is
also visible in the case of the TDSE, even though it is
much less pronounced. The innverse width of the cor-
responding resonance is around 800 fs, so that the reso-
nance needs obviously longer time to fully build up. On
the other hand, the peak at around 30 TW/cm2 plays
significant role in the latter case; this demonstrates that
for the pulse durations we used in Fig. 2 there are still
significant differences in the dynamical response of both
models.
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FIG. 4. XFROG diagram of a TDSE simulation for 2-bound-
states-atom with the potential given by Eq. (4). Black lines
are put at arbitrary points symmetric in respect to the center
of the exciting pulse.

The situation changes when we consider longer pulses.
The result of more detailed comparison for a longer
pulse with the duration of 425.6 fs is shown in Fig. 3.
We observe in Fig. 3 XFROG traces of Ef according
to Eq. (2) for the adiabatic and TDSE approaches re-
spectively. Fig. 3(c) shows the ionization rate accord-
ing to the Floquet theory, while the black solid lines in
Fig. 3(d,e) depict the time dependence of the polariza-
tion P . The resonances seen in the adiabatic case are now
clearly visible in the TDSE calculation, showing that the
agreement between the adiabatic model and the TDSE
improves with increasing pulse duration. In Fig. 3(a,b)
the energies of the ionized electrons traveling to the right
(blue curves) as well as to the left (red curves) are shown

for two different pulse parameters. The peaks deviating
from ATI peaks positions (vertical lines) [13, 14, 32, 33]
represent signatures of the Freeman resonances while the
left/right asymmetry giving an additional evidence for
the existence of the residual currents.

0 100 200 300 400 500

t(fs)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

=0

= /2

0 100 200 300 400 500

t(fs)

-2

0

2

4

6

8

d
ip

o
le

 m
o
m

e
n
t 
(a

.u
.)

=0

= /2

(a) (b)

FIG. 5. Dependence of the atomic polarization P on the
carrier-envelope phase (CEP) in the adiabatic model (a) and
for the direct solution of TDSE (b) for the CEP θ = 0 (blue
lines) and θ = π/2 (red lines).

One important point to mention in the solution of the
TDSE in Fig. 3 is the remarkable asymmetry with respect
to the pulse intensity maximum (see black vertical lines
in Fig. 3), indicating temporal points symmetric with
respect to the pulse maximum. This is obviously not
the case for the adiabatic model. This can be explained
by the fact that the first ionization event in the pulse
does not only increase the number of the free electrons,
but also increases population of the intermediate states
of the system. The second ionization event “probes” this
population. In this way, a kind of a pump-probe sequence
takes place, where the role of the pump is played by the
first ionization event and the role of the probe by the
second ionization event. What is probed in this case
is the population of highly excited bound states of the
atom. To support this conclusion, we plotted in Fig. 4
the XFROG for an artificial short-range potential, which
has the same ionization energy but contains only two
bound states. The potential has the form:

V = −
exp

(
−x10/σ10

)
√
dx2 + a2

, (4)

with constants σ = 3, d = 0.35 and a = 1.549 (all con-
stants in atomic units). Under these parameters, the
second bound state lies around -0.2 a. u. and close to the
second bound state of the initial potential Eq. (1). One
can see from Fig. 4 that the dynamics in the present case
is much more symmetric (except for the feature at 450 -
500 fs, which is caused by plasma losses due to absorbing
boundary). That is, we can conclude that the asymme-
try of the XFROG in Fig. 3 results from the dynamics of
the population trapped in high-lying bound states, which
are absent in case of our artificial two-level atom.

Finally, to provide additional evidence for the sub-
cycle time scale of the dynamics, we consider the depen-
dence of the effect on the carrier envelope phase (CEP)
of the pump pulse. The dynamics of the polarization P
is shown in Fig. 5 for two different CEP phases, both for
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FIG. 6. Dependence of the low frequency radiation compo-
nent ∼ ω2J(ω)2 on the pulse duration and intensity (note the
logarithmic scale).

the adiabatic theory and for the TDSE. By observing the
slope of P (since J = ∂tP ) one can see that the residual
current is strongly CEP dependent, supporting the short-
scale dynamics of the process. The same effect is visible
in the TDSE simulations (Fig. 5). Thus, the effect ob-
served here lies exactly in the transition regime between
the adiabatic and non-adiabatic evolution. If we further
increase the pulse duration, the slope of the intensity in-
side the pulse and thus the width of the resonance will
also increase. As the Freeman resonance width becomes
larger than the optical pulse cycle, the transient currents
and corresponding radiation should disappear. This is
indeed the case, as illustrated in Fig. 6. In addition, al-
though the signatures of resonances are still visible in
Fig. 6 (adiabatic model) for the pulses with the duration
. 100 fs they disappear in the TDSE simulations.

In conclusion, we have demonstrated that Freeman res-
onances lead to spatial symmetry breaking in the gener-
ation of free currents of the liberated electrons. This, in
turn, leads to generation of new frequencies in a broad
spectral range, similar to Brunel radiation. In particular,
it provides a new source of radiation at THz frequencies
and a broad comb-like spectrum from THz to the visible
range. The line-to-line distance of the comb can be con-
trolled by the pulse duration. Even more importantly,
this comb-like structure as well as detailed consideration
of the corresponding correlation traces show that the ra-
diation described here contains the fingerprints of elec-
tron transition to the continuum enhanced due to the
presence of intermediate resonant states, which can be
used to get the information about electron dynamics in
conjunction with other established approaches [29–31].
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