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We demonstrate the emergence of universal Efimov physics for interacting photons in cold gases of
Rydberg atoms. We consider the behavior of three photons injected into the gas in their propagating
frame, where a paraxial approximation allows us to consider them as massive particles. In contrast
to atoms and nuclei, the photons have a large anisotropy between their longitudinal mass, arising
from dispersion, and their transverse mass, arising from diffraction. Nevertheless, we show that in
suitably rescaled coordinates the effective interactions become dominated by s-wave scattering near
threshold and, as a result, give rise to an Efimov effect near unitarity. We show that the three-body
loss of these Efimov trimers can be strongly suppressed and determine conditions under which these
states are observable in current experiments. These effects can be naturally extended to probe few-
body universality beyond three bodies, as well as the role of Efimov physics in the non-equilbrium,
many-body regime.

The problem of classifying the universal properties of
few-body systems near unitarity, i.e., a divergence in the
two-body scattering length a, was first undertaken for
the three-body problem by Vitaly Efimov in 1970, who
discovered an infinite series of three-body bound states
obeying a geometrical scaling relation [1]. This discovery
served as an important guide to theoretical work in few-
body physics in subsequent years [2], but the observation
of such Efimov trimers in nature remained elusive until
pioneering experiments on cold atomic gases reported di-
rect signatures of these states in atomic loss spectroscopy
[3]. That success reinvigorated work on the classification
problem alluded to above, including in systems other
than cold atoms [4, 5]. As a result, recent years have
seen the elucidation of many universal properties of N -
body systems for N ≥ 3 [6–13], including the many-body,
short-time dynamics of Efimov trimers in a unitary Bose
gas [14]. Despite this progress, Efimov states, as well as
larger bound state clusters, are typically associated with
large inelastic losses in cold atom systems due to strong
three-body recombination. These losses generally pre-
clude the study of many-body physics of Efimov trimers
such as the formation of a Bose-Einstein condensate of
trimers [15], and limit efforts to study universal bound
states for large N .

Recently, it has become possible to achieve strong in-
teractions between single photons by dressing light with
strongly interacting Rydberg atoms to form Rydberg po-
laritons [16, 17]. The resulting photon-photon interac-
tions have been used to study a diverse array of quantum
nonlinear optical effects including: single-photon block-

ade and transistors [18–22], two-photon phase gates [23–
26], and the formation of one dimensional few-photon
bound states [27–33]. Combining these strong interac-
tions with the high degree of available control over the
optical and atomic degrees of freedom makes these sys-
tems a promising platform for exploring non-equilibrium
quantum many-body physics and realizing quantum sim-
ulation [34–44].

In this Letter, we show how such systems of interact-
ing photons can lead to the formation of Efimov states
of light. We extend previous work on bound states of
photons in Rydberg polariton systems by accounting for
the three-dimensional (3D) nature of the photons. For at-
tractive interactions, these considerations lead to the pos-
sibility of forming 3D bound states, of which the Efimov
states are the first class of three-body bound states that
emerge as the strength of the interactions is increased
from zero.

Crucial to the realization of Efimov states in this sys-
tem is their low-energy, long-wavelength nature, which
leads to their emergence independent of many of the mi-
croscopic details of Rydberg polaritons. We use this
property to show that the three-body losses of these
Efimov states can be strongly suppressed, allowing for
the formation of long-lived Efimov trimers. We analyt-
ically demonstrate that this class of Efimov states have
anisotropic spatial wavefunctions due to the anisotropic
effective mass of the polaritons. To prepare these states
we take advantage of the fact they propagate in the
medium as the three-body limit of an optical soliton.
This property allows them to be distinguished from non-
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FIG. 1: (a) Schematic of EIT and the Rydberg blockade effect.
(b) Effective interaction potential for the Rydberg polaritons.
(inset) The Efimov states have a large spatial extent compared
to the microscopic range of the potential, leading to many
simplifications. (c) The Efimov states emerge in transmission
because they are immune to dispersion and diffraction inside
the medium. Spatially resolving multi-mode, three-photon
coincidence measurements allow for detailed characterization
of these states [32, 45].

bound states in the system, which will dephase due to
dispersive and diffractive effects [27, 32]. Finally, we con-
sider the conditions under which these states can be di-
rectly observed in current experiments.

The basic configuration to realize interacting pho-
tons via atomic Rydberg states is shown in Fig. 1(a).
The Rydberg atoms are dressed with a quantum field
of light using electromagnetically induced transparency
(EIT). Rydberg-Rydberg interactions lead to the Ryd-
berg blockade effect [46], whereby a single atom (polari-
ton) in the state |s〉 shifts the s-state of nearby atoms
out of resonance, leading to a strong optical nonlinearity.
To describe the light transmission of this system, we in-
troduce a bosonic field ψ(r) associated with the Rydberg
dark-state polaritons. The bare interaction between the
Rydberg atoms is given by the van der Waals interac-
tion V (r) = −C6/r

6, however, the effective interactions
between polaritons take the form [see Fig. 1(b)] [28]

U(r) =
αV (r)

1− χ̄V (r)
, (1)

where χ̄ and α are a function of the control parameters
and atomic decay rates [47]. Here we consider the case
χ̄, C6 > 0 with a large detuning ∆ from the intermedi-
ate state so that U(r) is attractive, non-singular, and
conservative. U(r) has a long range van der Waals tail,
but saturates to a constant value for r � rb, where the
blockade radius is defined as rb = |χ̄C6|1/6. Due to their
low-energy, the Efimov states will have a spatial extent
much larger than rb [see inset to Fig. 1(b)]. We take

advantage of the long-wavelength nature of these states
to describe their propagation using the effective second-
quantized Hamiltonian density

H = ψ†(r)

[
− i~vg∂z −

~2∂2z
2mz

− ~2∂2⊥
2m⊥

]
ψ(r)

+

∫
d3r′ ψ†(r)ψ†(r′)U(r − r′)ψ(r′)ψ(r),

(2)

where vg is the EIT group velocity, mz is the longitudinal
mass arising from dispersive effects, m⊥ is the transverse
mass arising from diffraction in the paraxial wave approx-
imation, and ∂2⊥ = ∂2x + ∂2y . The lowest order correction
to this effective Hamiltonian is a short-range, three-body
force [30–33]; however, such forces typically play a minor
role in Efimov physics so we neglect them here [48–50].

After transforming into a co-moving frame, apart from
the anisotropic mass, the effective model has a standard
form studied in few-body atomic and nuclear systems.
Furthermore, near threshold, we find that the anisotropy
in the mass can be accounted for by a simple rescaling
of the coordinates and the scattering becomes isotropic
in the absence of higher partial wave resonances. This
implies that the universal few-body hierarchy, beginning
with the Efimov effect will arise near unitarity for such
3D Rydberg polaritons.

The preparation and detection scheme for the Efimov
states is illustrated in Fig. 1(c). The entrance into the
medium acts as a quantum quench [27, 30], generat-
ing a finite overlap with the Efimov states. Once they
are formed inside the medium, the bound states propa-
gate without distortion, while the scattering states de-
phase with each other. As a result, for a sufficiently
long medium in the absence of losses, the output will
be dominated by the Efimov states. This effect has
been used previously in 1D Rydberg polariton experi-
ments to directly observe the formation of two and three-
body bound states [27, 32]. When there is more than
one bound state in the medium, these states are distin-
guishable by their spatial structure or propagation phase
through the medium. To directly probe these states one
can use time-resolved, three-photon coincidence measure-
ments to access their longitudinal spatial structure, while
multi-mode spatial resolution can probe their transverse
structure [32, 45].

Few-Body Scattering with Anisotropic Mass.—To un-
derstand the origin of the non-interacting part of Eq. (2),
we consider the Hamiltonian for a single polariton with
total wavevector k =

√
(k0 + qz)2 + q2⊥ (~ = 1)

H =



ck − ck0 g 0

g ∆ Ω
0 Ω 0


 , (3)

where q is the momentum relative to k0ẑ, g =
µat

√
ck0n/~ε0 is the single-photon Rabi frequency of the
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probe, ε0 is the dielectric constant, n is the atomic den-
sity, µat is the atomic dipole moment, Ω is the control
field Rabi frequency, and ∆ is the detuning between
the control field and |p〉 to |s〉 transition frequency [see
Fig. 1(a)]. We include the decay from the intermediate
state by adding an imaginary component to ∆→ ∆− iγ,
where γ is the halfwidth of the p-state. For every q, H
has three eigenvalues εµ(q), which can be used to find
the group velocity and effective mass of the polaritons

vg =
dεµ∗

dqz

∣∣∣
q∗

= c
[Ω2 + ω(∆− ω)]2

g2(Ω2 + ω2)
, (4)

1

mz
=
d2εµ∗

dq2z

∣∣∣
q∗

=
2v2g

Ω2 + ω2

Ω2(∆− 3ω)− ω3

Ω2 + ω(∆− ω)
, (5)

1

m⊥
=
d2εµ∗

dq2⊥

∣∣∣
q∗

=
vg
k0
, (6)

where εµ∗(q
∗) = ω is only satisfied for one choice of

q∗ and µ∗ ∈ {U,D,L} [see Fig. 2(a)] and we take
q∗⊥ = 0. Here we have neglected higher order corrections
in Ω/g. From these expressions we see that, on EIT res-
onance (ω = 0), the mass ratio mz/m⊥ = g2/2c∆k0 =
(3πγ/∆)nk−30 .

More generally, the mass ratio can be independently
tuned by taking advantage of the unconventional dis-
persion relation for the dark-state polaritons. This is
illustrated in Fig. 2(a), which shows that the inverse
longitudinal mass goes through a sign change for in-
coming probe frequencies away from the EIT resonance.
From Eq. (5) we see that the inflection point occurs near
ω = (Ω2∆)1/3. Operating near this inflection point al-
lows one to equalize the mass ratio; however, it does not
remove the effect of inelastic losses.

We define the average mass m−1 = (m−1z +m−1⊥ )/2 and
parametrize the mass ratio as tan2(β) = mz/m⊥. The
condition to neglect the inelastic losses, which applies to
both the EIT resonance and the inflection point in the
limit ∆� γ, |ω|, is given by

Re(m−1)

Im(m−1)
≈ 3π

2β2

n

k30
� 1. (7)

For example, for atomic densities near 1013 cm−3, β
should be less than 0.1. It is also worth noting that the
regime where β ≈ 1 and Eq. (7) predicts small inelastic
losses precisely coincides with the regime of Dicke super-
radiance n/k30 & 1 [51]. In this regime, our assumption
of independent decay channels for the atomic radiation
would have to be re-visited.

To understand the role of such a large anisotropy in
the mass on the few-body scattering problem, we first
consider the two-body problem with an anisotropic mass.
The Schrödinger equation for two particles in the center
of mass frame takes the form

− 1

m
∇̃2ψ + U(r̃)ψ = Eψ (8)
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FIG. 2: (a) Dispersion relation near EIT resonance and in-
flection point for three polariton branches U (red), D (black),
and L (blue). We took Ω/2π = 5 MHz, ∆ = 40 MHz, and
g/2π = 100 MHz. Here g was taken to be smaller than its
value in typical experiments to aid visibility. (b) Shape of
potential in rescaled coordinates. (c) Scattering length as a
function of the depth of the potential for m⊥/mz = 10. The

first resonance occurs near
√
mU(0)r0 = 2.27.

where E is the energy and we have transformed to
rescaled coordinates z̃ = z/

√
2 cosβ and (x̃, ỹ) =

(x, y)/
√

2 sinβ such that the kinetic energy term becomes
isotropic and the interactions become anisotropic [see
Fig. 2(b)]. The characteristic length scale of the potential
in the rescaled coordinates is given by r0 = rb/

√
2 sinβ.

In these rescaled coordinates we see that the interaction
term mixes different two-body angular momentum ` sec-
tors.

For low-energies, however, the higher angular momen-
tum channels are subject to a large centrifugal barrier,
which allows the interaction terms that mix angular mo-
mentum sectors to be treated perturbatively. In particu-
lar, for an interaction potential that falls off as 1/rδ with
δ > 3 and for ` + `′ ≥ 2, the scattering-matrix elements
(so-called T -matrix) scale as [52, 53]

|T (m)
``′ | ∼ constant k`+`

′+1 + constant kδ−2. (9)

We numerically verify these scalings near threshold for
a large value of the mass ratio in the supplemental ma-
terial [47]. These scalings suggest that the potential ap-
pears completely isotropic near threshold as all the par-
tial waves beyond the s-wave channel `, `′ > 0 are sup-
pressed in the absence of higher-partial wave resonances.
To tune near unitarity in this system we take advantage
of shape resonances in the s-wave scattering length a. In
Fig. 2(c) we show the positions of the first two scatter-
ing resonances as a function of the depth of the potential√
mU(0)r0, which can be tuned via Ω or ∆.

These features of the two-body problem have impor-
tant implications for the three-body problem as well. In
particular, this analysis directly implies that the three-
body hyperspherical potential U3(R) will have the uni-
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versal behavior in the region r0 � R� a [1, 2]

−
√

3

2m

[
d2

dR2
+
s20 + 1/4

R2

]
fn(R) = Enfn(R) (10)

where s0 = 1.00624 . . ., R is the three-body hyperradius
in the rescaled coordinates [47], and fn is the hyperra-
dial component of the three-body wavefunction in hy-
perspherical coordinates. For distances on the order of
r0 this equation is no longer accurate as the character
of the two-body interactions [Eq. (1)] become important.
However in the region, R � rb we can also find the hy-
perspherical potential analytically because the two-body
potential approaches a constant. To better understand
the intermediate region rb . R . r0, we have performed
numerical calculations [54, 55] of U3(R) that include the
coupling to higher-partial waves as a perturbative correc-
tion to the two-body s-wave potential [47]. The results
are shown in Fig. 3(a) for the first scattering resonance
with m⊥/mz = 10. We see good agreement with the two
analytic predictions in the small and large R limits. The
presence of the long-range 1/R2 potential near unitarity
shows that the three-body problem will give rise to an
Efimov effect with an infinite series of three-body bound
states, with energies (n = 0, 1, . . .)

En = −κ
2
∗
m
e−2πn/s0 , (11)

while the presence of the centrifugal barrier near R ∼ r0
suggests the scaling for the three-body parameter κ∗ ∼
1/r0 [48, 50, 56].

Suppression of Three-Body Loss.—In cold-atom sys-
tems, the lifetime of the Efimov states is limited by their
decay into deeply bound two-body states. In this Ryd-
berg polariton system we can avoid such effects by tuning
the system near the first scattering resonance in Fig. 2(c),
where no deep two-body bound states exist. We can also
avoid inelastic two-body loss by going to sufficiently large
detunings ∆. However, due to the multi-component na-
ture of the polariton system and the unconventional dis-
persion relations, three-body loss processes are still al-
lowed whereby energy and momentum is conserved by
scattering the polaritons far away from their initial mo-
mentum. As shown in Fig. 3(b), near the inflection point,
two such three-body loss processes are allowed. In one
case, one of the polaritons has a final state on the lower
polariton branch, while, in the other case, all three po-
laritons end on the dark-state branch. On EIT resonance,
energy and momentum conservation only allow the for-
mer process.

Despite the presence of these additional loss channels,
we find that their contribution to the three-body loss is
strongly suppressed because the Rydberg blockade mech-
anism leads to an exponentially small two-body potential
for large relative momenta δq � r−1b . In particular, for
the three-body loss channels in Fig. 3(b) each process
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FIG. 3: (a) (red) Rescaled three-body hyperspherical poten-
tial at the first scattering resonance for m⊥/mz = 10. (yel-
low) In the region R � r0, U3(R) approaches the universal
form that gives rise to the Efimov effect. (blue) Analytic re-
sult in the region R� rb. (b) Three-body loss processes near
inflection point (same branch and different branch, see text),
where q0 is the incoming momentum of the polaritons.

involves a finite momentum transfer δq. When the mini-
mum δq � r−1b , we can estimate the three-body loss rate
perturbatively in the Fourier transform of U(r), which,
it is readily seen, is exponentially suppressed as e−δqrb .
Near the inflection point, the minimum δq (and thus the
dominant channel) occurs for the process where all three
polaritons end on the dark-state branch. By analytically
by expanding the dispersion to third order around the
momentum of the polaritons, we find that the three-body
losses will be suppressed when

δqzrb ≈
(

g2

ck0∆

)5/3

(rbk0)1/3
Φ2/3

β3
� 1, (12)

where the value of Φ ≡
√
mU(0)r0 is determined by

the position of the first scattering resonance [e.g., see
Fig. 2(c)]. In the supplemental material we provide a
more detailed discussion of the scaling of the three-body
loss parameter [47]. For a density of 1013 cm−3 with
a blockade radius of 20 µm [27], this implies that β
should be less than 0.1 to strongly suppress the three-
body losses.

On EIT resonance, the minimum δq for the three-body
loss resonance scales as g2/c∆, This scaling implies that
three-body loss will still play an important role near the
first scattering resonance because, on EIT resonance, Φ ≈
φ. Thus we see the primary advantage of working near
the inflection point is the control it provides over the
mass ratio, scattering length, and three-body loss rate.
Preparation and Detection.—To prepare the Efimov

states we propose to use the high-degree of control over
the two-body parameters to tune the scattering length
(a < 0) to values in which the trimers cross zero en-
ergy. As each such value is crossed in the space of control
paramters, an Efimov state will emerge in transmission
through the medium due to the quench dynamics de-
scribed in the introduction. When more than one Efimov
state is present in the medium, they can be distinguished
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from each other by changing the transverse focus of the
input field to increase the initial overlap with the desired
state. We give a more detailed discussion of the experi-
mental requirements to realize long-lived Efimov trimers
of Rydberg polaritons in the supplemental material [47].
More generally we remark that the low-energy nature of
the Efimov states will render them insensitive to many
corrections arising from short-range physics; thus we ex-
pect their emergence to be a robust feature of the Ry-
dberg polariton system whenever it is possible to tune
near a resonance in the 3D two-body scattering length.

Conclusions.—We have demonstrated that systems of
interacting photons formed from Rydberg polaritons nat-
urally give rise to an Efimov effect. A potential advantage
of this approach is that one can realize long-lived Efimov
trimers by tuning near the first scattering resonance and
suppressing other three-body loss channels. The wide
range of control over the system parameters and the abil-
ity to suppress N -body losses make this a promising plat-
form for studying few-body universality. At the same
time, increasing the input light intensity provides access
to the non-equilibrium, many-body regime where the role
of universal few-body physics is poorly understood. The
resulting photonic states that emerge from the medium
have a rich multi-particle entanglement structure, which
may enable them to be used as a resource for optics-based
quantum technologies [45, 57].
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