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We demonstrate quantum entanglement of two trapped atomic ion qubits using a sequence of
ultrafast laser pulses. Unlike previous demonstrations of entanglement mediated by the Coulomb
interaction, this scheme does not require confinement to the Lamb-Dicke regime and can be less
sensitive to ambient noise due to its speed. To elucidate the physics of an ultrafast phase gate, we
generate a high entanglement rate using just 10 pulses, each of ∼ 20 ps duration, and demonstrate an
entangled Bell-state with (76±1)% fidelity. These results pave the way for entanglement operations
within a large collection of qubits by exciting only local modes of motion.

Trapped atomic ions are regarded as one of the most
mature and promising platforms for quantum informa-
tion processing [1, 2], exhibiting excellent coherence prop-
erties [3], near-perfect qubit detection efficiency [4], and
high-fidelity entangling gates [5, 6]. Entangling oper-
ations between multiple ions in a chain typically rely
on qubit state-dependent forces that modulate their
Coulomb-coupled normal modes of motion [1, 7, 8]. How-
ever, scaling these operations to large qubit numbers in a
single chain must account for the increasing complexity
of the normal mode spectrum, and can result in a gate
slowdown [9] or added complexity of the control forces
[10].

Here we investigate the fundamental entangling oper-
ation of a different scaling approach that uses impul-
sive optical forces [11–16]. These ultrafast qubit state-
dependent kicks occur much faster than the normal mode
frequencies of motion and thus can couple through local
modes of motion without perturbing spectator trapped
ion qubits. This ultrafast approach has the added ben-
efit of being less sensitive to relatively slow noise, and
is also insensitive to the ions’ thermal motion since it
is effectively frozen during the interaction. Unlike other
Coulomb-based gates between ions, ultrafast entangle-
ment operations do not require confinement to within
the Lamb-Dicke regime, where the motional extent of
the ions is smaller than the optical wavelength associ-
ated with the force. In this Letter, we show a proof-
of-principle demonstration of entanglement between two
trapped ion qubits by applying a sequence of ten ultrafast
laser pulses and directly show the insensitivity to initial
thermal motion outside the Lamb-Dicke regime [17].

In the experiment, we confine two 171Yb+ atomic ions
along the axis of a linear rf (Paul) ion trap [18]. We apply
impulsive forces using counterpropagating Raman beams
along one of the transverse principal axes of harmonic
motion, coupling to both the in-phase center-of-mass
mode at frequency ωC/2π = 1.267 MHz and the out-of-
phase relative mode at frequency ωR/2π = 1.170 MHz.
To minimize couplings to the other transverse modes, we
apply bias voltages to trap electrodes to align one of the
principal axes of the trap along the Raman beams. The

ion-ion spacing is about 6 µm. The qubit is defined by
the ground-state hyperfine levels |F = 0,mF = 0〉 ≡ |↓〉
and |F = 1,mF = 0〉 ≡ |↑〉 of the 2S1/2 manifold, sep-
arated by ω0/2π = 12.64 GHz. The ions are Doppler
cooled on the 2S1/2 ⇔2 P1/2 transition at a wavelength of
369.5 nm (Γ/2π ∼ 20 MHz), with both COM and relative
modes cooled to an average thermal vibrational popula-
tion of n̄ ∼ 10. Qubit state initialization and detection is
performed by optical pumping and state-dependent res-
onance fluorescence on the same transition with fidelities
greater than 99% [19]. Fluorescence is imaged by a 0.6
NA lens with 500x magnification [20], allowing individual
qubit state detection with two separated photomultiplier
tubes (PMTs).

Impulsive state-dependent forces are provided by τ ∼
20 ps pulses from a mode-locked laser with center wave-
length 2π/k = 355 nm and repetition rate frep = 81.42
MHz that drives stimulated Raman transitions between
the qubit levels [21]. As shown in Fig. 1a, after pick-
ing single pulses with an electrooptic Pockels Cell, we
shape each pulse using a sequence of three delay stages
to divide each single pulse into eight sub-pulses [13]. The
pulse train, of total duration ∼ 2.3 ns, is split into two
arms with orthogonal linear polarizations and directed
onto the ions in a counter-propagating geometry along
the transverse direction of motion. Each arm includes
an acousto-optic modulator (AOM) that shifts the cen-
ter frequency of each beam with opposite sign. The
net frequency difference between the two arms, which
is ωA = ωAOM1 + ωAOM2 = 2π × 468.73 MHz, gives rise
to the directionality of the interaction. The delays be-
tween the eight sub-pulses are set in concert with the
frequency offset ωA in order to ensure they coherently
add to produce a qubit state-dependent kick (SDK) [14].

For a single trapped ion, the ideal evolution operator
from an SDK applied at time t is given by eiφ(t)D̂(iη)σ̂++
e−iφ(t)D̂(−iη)σ̂−. The phase φ(t) = ωAt + ∆φL is re-
lated to the AOM frequency and the difference in op-
tical phase ∆φL between the two arms, assumed to be
constant during the interaction. The raising and low-
ering operators σ̂± act on the qubit, and the displace-
ment operator D̂(±iη) acts on the motional state of the
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FIG. 1. (a) Experimental schematic. A single pulse from a mode-locked 355 nm laser is divided into 8 sub-pulses by three
sequential optical delay stages. The shaped pulse is then split into two paths directed through independent AOMs, used to make
the interaction direction-dependent. The pulses overlap in space and time at the position of the ions in a counterpropagating
lin⊥lin polarization configuration that produces an SDK [21]. Following gate operations, the ion qubits are measured by
collecting state-dependent fluorescence from the two ions on respective PMTs when resonant lasers are applied (not shown).
(b) Phase space evolution for a single SDK on a single ion. The SDK displaces the momentum of an initial motional state (in
purple) by ±2p0η in phase space, correlated with the internal spin raising/lowering operator σ± in the ion. (c) Phase space
evolution for two collective modes of motion under a sequence comprised of an SDK at time t1, free evolution, and a second
SDK at time t2, in frames rotating at the respective mode frequencies. Each SDK imparts a phase depending on the magnitude
of the momentum kick and the coherent state before the kick (see Eq. 3), as well as a laser phase 2φ(t)(−2φ(t)) on the |↓↓〉
(|↑↑〉) states (see Eq. 5). In addition, the motional states acquire a phase from the free evolution (see Eq. 2). Because the
evolution is depicted in the rotating frame, the direction of an SDK depends on the time elapsed since the previous SDK.

ion along the axis of transverse motion, translating the
momentum in phase space by ∆p = ±~(∆k) = ±2p0η.
Here ∆k = 2k is the wavevector difference between the
counter-propagating beams and p0 =

√
m~ω/2 is the

zero-point momentum spread of harmonic motion at fre-
quency ω for an ion of mass m (x0 = ~/2p0 is the
zero-point position spread). The Lamb-Dicke parameter
η = ~∆k/(2p0) ≈ 0.17 thus parametrizes the momentum
kick in natural units. In contrast to conventional forces
applied in the resolved sideband regime [22], the impul-
sive SDK is about three hundred times faster than the
oscillation period and does not rely on confinement to
the Lamb-Dicke regime.

The action of an SDK on two ions is given by

ÛSDK(t) = e2iφ(t)σ̂1+σ̂2+D̂C(iηC)+

e−2iφ(t)σ̂1−σ̂2−D̂C(−iηC)+

σ̂1+σ̂2−D̂R(iηR) + σ̂1−σ̂2+D̂R(−iηR),

(1)

with spin operators for each ion and displacement op-
erators for each mode. The Lamb-Dicke parameters for

the COM and relative modes are ηC =
√

2η = 0.24 and
ηR =

√
2ωC/ωRη = 0.25. Due to their distinct displace-

ment amplitudes and frequencies, the COM and relative
modes trace distinct paths in phase space when subjected
to a sequence of SDKs interspersed with free evolution.
Fig. 1c shows the trajectories of the two modes in frames
rotating at the respective mode frequencies, where the
SDK displacement for each mode m has magnitude ηm
along an axis rotated by angle ωmt with respect to the
previous kick after elapsed time t.

A sequence of SDK pulses indexed to uniform time
steps of duration T = 1/frep can be expressed by N
displacement indices {b1, b2, ..., bN} with bn = ±1 for a
kick and bn = 0 corresponding to a wait (no pulse). Since
two successive SDKs undo each other, whether b is +1 or
−1 for a particular kick depends on the sign associated
with the previous kick and whether the beam direction,
defined by which beam is shifted up in frequency, is the
same or reversed (∆k → −∆k, φ(t) → −φ(t)). Since
the frequency of the two beams is correlated with the
polarization, we can reverse the beam direction with a
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FIG. 2. (a) The gate sequence is applied within a Ramsey experiment. The entangling gate contains 5 repetitions of a sequence
consisting of a single SDK (bn = 1), followed by a wait of M1 time steps (bn = 0), another SDK (bn = −1), and a final wait
of M2 time steps. (b) Depiction of the trajectories followed by the COM and relative modes for a fully entangling sequence.
They follow opposite circulations, enclose similar areas, and the sum leads to the gate phase. (c) We choose φ2 such that we
maximize P↑↑, P↓↓ and minimize P↓↑, P↑↓ (black arrow). Population in |↑↓〉 and |↓↑〉 is due mostly to SDK infidelity causing
single particle coherences. Amplitude differences of the peaks in the P↓↑ + P↑↓ signal are likely caused by microwave power
calibration errors. (d) The parity oscillation amplitude after choosing the value of φ2 corresponding to the black arrow in (c)
is proportional to 2ρ↑↑,↓↓, which allows us to compute the fidelity. The best parity oscillation amplitude achieved is 0.69(1),
leading to a final gate fidelity of 76(1)%. The error bars reflect the statistical uncertainty, and for (d) are typically smaller than
the points.

second Pockels cell [23]. If the beam direction stays the
same, then b switches signs; if the direction is reversed,
then b stays the same sign. So for a sequence where
all of the pulses have the same orientation, the b’s will
alternate between +1 and −1. This sequence leads to
displacements of initial coherent states for each mode m
from |α0〉m to eiφm |α〉m, with [11]

α = e−iNωmT

(
α0 + i

N∑
n=1

ηmbne
inωmT

)
(2)

φm = Re

(
α0

N∑
n=1

ηmbne
−inωmT

)

+

N∑
n=2

n−1∑
j=1

η2
mbnbj sin[ωmT (n− j)]. (3)

We design pulse sequences {bn} so that the sum in Eq.
2 vanishes and both motional phase spaces close. Given
an even number of pulses, this produces a phase gate

described with truth table

|↓↓〉 ⇒ |↓↓〉ei(Φg+γ)

|↓↑〉 ⇒ |↓↑〉
|↑↓〉 ⇒ |↑↓〉
|↑↑〉 ⇒ |↑↑〉ei(Φg−γ).

(4)

The nonlinear geometric phase Φg = φC−φR is set to π/2
for maximum entanglement. The residual linear phase
from the series of optical kicks is

γ = 2ωAT

N∑
n=1

nbn + 2∆φL

N∑
n=1

bn, (5)

assumed to be constant throughout the gate sequence
but varying from one experiment to the next. In order
to eliminate the dependence on ∆φL we must utilize se-
quences with an even number of pulses where the sum of
the b’s is 0.

Here, we implement a quantum gate with fast pulses
by finding gate sequences with the least number of SDKs,
without reversing the beam directions (so the nonzero b’s
alternate between +1 and -1). For Np individual pulses
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FIG. 3. (a) Measured parity oscillation amplitude for various values of the gate phase Φg, which should be proportional to
sin Φg (solid blue line). The gate phase is modified by changing the pulse schedule given by the integers M1 and M2 (see
main text). The insets show phase space trajectories for the COM (black solid curves) and relative (red dashed curves) modes
for Φg = π/1.67 (right) and Φg = π/11.9 (left). The fidelity of the entangled state produced in each case, referenced to the
ideal state Ψf (Φg) in Eq. 7, is roughly 0.7 for all the measurements. (b) Pulse sequence for a faster sequence, where the kicks
along the arms of the trajectory are switched each time, and there is trap evolution to round the corners. See Supplementary
Material for experimental details, including the pulse schedule. The inset shows the parity oscillation. Because there are more
pulses, the gate phase is less than π/2, and there are additional infidelities introduced by the switching, the amplitude of the
parity oscillation is significantly smaller than that in Fig. 2. The total gate time is about 1.95 µs.

separated in time by an integer multiple M of the laser
pulse period T , the condition for closing phase spaces is
similar to the tracing of a regular polygon in the complex
plane. We achieve the largest nonlinear gate phase for a
given number of pulses by driving the COM and relative
modes in opposite directions in phase space so that φR ≈
−φC .

Using the above trap parameters with Np = 10, we
find that the phase space trajectories of COM and rel-
ative modes trace out regular decagons of opposite cir-
culation for M = 166, with corresponding gate phase
Φg = π/1.67. Other values of Φg can be realized by al-
ternating between two different integer multiples of the
pulse periods, M1 and M2, such that M1 + M2 = 2M .
This deforms the trajectories to decagons with two dis-
tinct vertex angles (see Figs. 2b and 3a), allowing the
fine tuning of Φg. For M1 = 175, M2 = 157, we find
Φg = π/2.06, nearly a fully entangling gate in a total du-
ration of (NpM−M2)T = 18.5 µs. There are many more
types of pulse solutions with even more complex polygo-
nal trajectories given the delay times between pulses.

We characterize the phase gate by applying the gate
operation within a three-pulse Ramsey interferometer on
the qubits. We start the sequence by optically pumping
the ions to the state |↓↓〉. A first microwave π/2-pulse
rotates both spins to populate an equal superposition of

all 4 basis states. The entangling laser pulse sequence is
then applied, which according to the truth table (eq. 4)
should ideally produce the state

Ψe =
eiΦg

2

(
eiγ |↓↓〉+ e−iγ |↑↑〉

)
− 1

2
(|↑↓〉+ |↓↑〉) , (6)

where in the above expression we have suppressed the
motional state, since both phase spaces should be closed
at this point.

A second π/2 microwave Ramsey pulse (with phase φ2

with respect to the first pulse) is then applied. We choose
its phase to ideally create the state

Ψf =
e−iγ

2
(eiΦg − 1)|↓↓〉+

eiγ

2
(eiΦg + 1)|↑↑〉. (7)

We experimentally determine the appropriate phase of
the second Ramsey π/2 pulse by maximizing the popu-
lations P↑↑ and P↓↓ of the even parity states, as shown
in the Ramsey fringes of Fig. 2c.

In order to verify the coherence of the above entan-
gled state, we apply a third π/2 “analysis pulse” and
measure the parity of the two qubits as a function of
the phase of this last pulse, as shown in Fig. 2d. The
parity oscillates with twice the period of a single spin,
and the contrast C of the oscillation reveals the coher-
ence between the entangled superposition in Eq. 7. The
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state fidelity with respect to the ideal Bell state is then
F = (P↑↑ + P↓↓ + C)/2 [24]. We measure a Bell state
fidelity of F = 76(1)%.

As a further validation of our control over various gate
sequences, we vary the gate phase Φg by changing the
number of pulses M1 and M2 over a wider range. In
Fig. 3a we show a measurement of the parity oscillation
contrast C for different values of Φg. The measured par-
ity oscillation amplitude for each gate sequence agrees
well with the expected sin Φg dependence. Finally, we
note that the linear phase γ can be regarded as a con-
stant offset phase in the above data and does not affect
the amount of entanglement or its diagnosis.

The entangling gate presented here is fundamentally
different than the Mølmer-Sørensen [8] and Cirac-Zoller
[7] gates for trapped ions, since individual motional
modes are not resolved. Moreover, the (thermal) mo-
tion of the ions occupies a spatial extent of x0

√
2n̄+ 1 ≈

0.8/∆k, outside the Lamb-Dicke regime.
We implemented a faster gate by dynamically switch-

ing the laser beam wavevector difference ∆k by inserting
a second electrooptic Pockels cell after the two AOMs.
The sequence is shown in Fig. 3b and consists of 16
SDKs and has a total duration of 1.95 µs for Φg ≈ π/2.4.
The trap frequencies were slightly lower than those used
for the previous experiment (ωC = 2π × 1.13 MHz and
ωR = 2π × 1.02 MHz) to better close both phase spaces.
As expected, the larger number of pulses and additional
infidelities introduced by the switching operation [23]
make the amplitude of the parity oscillation significantly
less than for the sequence described earlier. We note that
faster gate sequence solutions that are fully entangling
would require more SDKs or lower trap frequencies.

The gate infidelities in the demonstration presented
here are due to infidelities in the SDK, which can pos-
sibly arise from a variety of sources, including coupling
to unwanted modes or the |1,±1〉 states, or issues re-
lated to the pulse picking with a Pockels cell in the ul-
traviolet. In the future, it may be possible to achieve
the same ultrafast control with infrared optical sources
instead of ultraviolet lasers by frequency-upconverting
to the UV after pulse-shaping/switching or exploiting a
longer-wavelength atomic transition for the SDK.
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