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The pseudogap metal phase of the hole-doped cuprate superconductors has two seemingly un-
related characteristics: a gap in the electronic spectrum in the ‘anti-nodal’ region of the square
lattice Brillouin zone, and discrete broken symmetries. We present a SU(2) gauge theory of quan-
tum fluctuations of magnetically ordered states which appear in a classical theory of square lattice
antiferromagnets, in a spin density wave mean field theory of the square lattice Hubbard model,
and in a CP1 theory of spinons. This theory leads to metals with an antinodal gap, and topological
order which intertwines with the observed broken symmetries.

A remarkable property of the pseudogap metal of the
hole-doped cuprates is that it does not exhibit a ‘large’
Fermi surface of gapless electron-like quasiparticles exci-
tations, i.e. the size of the Fermi surface is smaller than
expected from the classic Luttinger theorem of Fermi liq-
uid theory [1]. Instead it has a gap in the fermionic spec-
trum near the ‘anti-nodal’ points ((π, 0) and (0, π)) of
the square lattice Brillouin zone. Gapless fermionic ex-
citations appear to be present only along the diagonals
of the Brillouin zone (the ‘nodal’ region). One way to
obtain such a Fermi surface reconstruction is by a bro-
ken translational symmetry. However, there is no sign
of broken translational symmetry over a wide intermedi-
ate temperature range [2], and also at low temperatures
and intermediate doping [3], over which the pseudogap is
present. With full translational symmetry, violations of
the Luttinger theorem require the presence of topological
order [4–6].

A seemingly unrelated property of the pseudogap
metal is that it exhibits discrete broken symmetries,
which preserve translations, over roughly the same re-
gion of the phase diagram over which there is an antin-
odal gap in the fermionic spectrum. The broken sym-
metries include lattice rotations, interpreted in terms of
an Ising-nematic order [7–10], and one or both of inver-
sion and time-reversal symmetry breaking [11–16]. Lut-
tinger’s theorem implies that none of these broken sym-
metries can induce the needed fermionic gap by them-
selves.

The co-existence of the antinodal gap and the broken
symmetries can be explained by intertwining them [17–
19], i.e. by exploiting flavors of topological order which
are tied to specific broken symmetries. Here we show
that broken lattice rotations, inversion, and time-reversal
appear naturally in several models appropriate to the
known cuprate electronic structure.

We consider quantum fluctuations of magnetically or-
dered states found in two different computations: a clas-
sical theory of frustrated, insulating antiferromagnets on
the square lattice, and a spin density wave theory of
metallic states of the square lattice Hubbard model. The
types of magnetically ordered states found are sketched

in Fig. 1a. The quantum fluctuations of these states are
described by a SU(2) gauge theory, and this leads to the
loss of magnetic order, and the appearance of phases with
topological order and an anti-nodal gap in the fermion
spectrum. We find that the topological order intertwines
with precisely the observed broken discrete symmetries,
as shown in Fig. 1b. We further show that the same
phases are also obtained naturally in a CP1 theory of
bosonic spinons supplemented by Higgs fields conjugate
to long-wavelength spinon pairs.
Magnetic order: We examine states in which the elec-
tron spin Ŝi on site i of the square lattice, at position ri,
has the expectation value〈
Ŝi

〉
= N0 [cos (K · ri) cos(θ) êx + sin (K · ri) cos(θ) êy

+ sin(θ) êz] . (1)

The different states we find are (see Fig. 1a) (D′) a
Néel state with collinear antiferromagnetism at wavevec-
tor (π, π), with K = (π, π), θ = 0; (A′) a canted state,
with (π, π) Néel order co-existing with a ferromagnet mo-
ment perpendicular to the Néel order, with K = (π, π),
0 < θ < π/2, (B′) a planar spiral state, in which the
spins precess at an incommensurate wavevector K with
θ = 0; (C′) a conical spiral state, which is a planar spiral
accompanied by a ferromagnetic moment perpendicular
to the plane of the spiral [20] with K incommensurate,
0 < θ < π/2.

First, we study the square lattice spin Hamiltonian
with near-neighbor antiferromagnetic exchange interac-
tions Jp > 0, and ring exchange K [21–25]:

HJ =
∑
i<j

Jij Ŝi · Ŝj + 2K
∑

ij

k `

[
(Ŝi · Ŝj)(Ŝk · Ŝ`)

+ (Ŝi · Ŝ`)(Ŝk · Ŝj)− (Ŝi · Ŝk)(Ŝj · Ŝ`)
]
. (2)

Jij = Jp when i, j are p’th nearest neighbors, and we
only allow Jp with p = 1, 2, 3, 4 non-zero. The classical
ground states are obtained by minimizing HJ over the
set of states in Eq. (1); results are shown in Fig. 2a-
c. We find the states A′, B′, C′, D′, all of which meet



2

s2

s1

hP i 6= 0 , hQai = 0 hP i = 0 , hQai = 0

hP i = 0 , hQai 6= 0hP i 6= 0 , hQai 6= 0

(A0) Canted antiferromagnet (D0) Néel
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FIG. 1. (a) Schematics of the magnetically ordered states obtained in the classical antiferromagnet, and in the spin density wave
theory of the Hubbard model. (b) Corresponding states obtained after quantum fluctuations restore spin rotation symmetry.
Phase D has U(1) topological order in the metal, but is unstable to the appearance of VBS order in the insulator. The crossed
circles in phase C′ indicate a canting of the spins into the plane. The labels s1, s2, P , Qa refer to the CP1 theory: the phases
in (a) are obtained for small g, and those in (b) for large g.

at a multicritical point, just as in the schematic phase
diagram in Fig. 1a. A semiclassical theory of quantum
fluctuations about these states, starting from the Néel
state, appears in Supplemental Material A [27].

For metallic states with spin density wave order [28–
31], we study the Hubbard model

HU = −
∑
i<j,α

tijc
†
i,αcj,α − µ

∑
i,α

c†i,αci,α + U
∑
i

n̂i,↑n̂i,↓

(3)
of electrons ci,α, with α =↑, ↓ a spin index, tij = tp
when i, j are p’th nearest neighbors, and we take tp
with p = 1, 2, 3, 4 non-zero. U is the on-site Coulomb
repulsion, and µ is the chemical potential. The elec-

tron density, n̂i,α ≡ c†i,αci,α, while the electron spin

Ŝi ≡ (1/2)c†i,ασαβci,β , with σ the Pauli matrices. We
minimized HU over the set of free fermion Slater deter-
minant states obeying Eq. (1), while maintaining uni-
form charge and current densities; results are illustrated
in Fig. 2d-f, and details appear in Supplemental Mate-
rial B [27]. Again, note the appearance of the magnetic
orders A′, B′, C′, D′, although now these co-exist with
Fermi surfaces and metallic conduction.
SU(2) gauge theory: We describe quantum fluctua-
tions about states of HU obeying Eq. (1) by transform-
ing the electrons to a rotating reference frame by a SU(2)
matrix Ri [36](

ci,↑
ci,↓

)
= Ri

(
ψi,+
ψi,−

)
, R†iRi = RiR

†
i = 1. (4)

The fermions in the rotating reference frame are spinless
‘chargons’ ψs, with s = ±, carrying the electromagnetic

charge. In the same manner, the transformation of the
electron spin operator Ŝi to the rotating reference frame
is proportional to the ‘Higgs’ field Hi [36],

σ ·Hi ∝ R†i σ · ŜiRi. (5)

The new variables, ψ, R, and H provide a formally re-
dundant description of the physics of HU as all observ-
ables are invariant under a SU(2) gauge transformation
Vi under which

Ri → Ri V
†
i

σ ·Hi → Vi σ ·Hi V
†
i

(
ψi,+
ψi,−

)
→ Vi

(
ψi,+
ψi,−

)
, (6)

while ci and Ŝi are gauge invariant. The action of the
SU(2) gauge transformation Vi, should be distinguished
from the action of global SU(2) spin rotations Ω under
which

Ri → ΩRi
σ · Ŝi → Ωσ · Ŝi Ω†

(
ci↑
ci↓

)
→ Ω

(
ci↑
ci↓

)
, (7)

while ψ and H are invariant.
In the language of this SU(2) gauge theory [36, 37],

the phases with magnetic order obtained above appear
when both R and H are condensed. We may choose a
gauge in which 〈R〉 ∝ 1, and so the orientation of the H
condensate is the same as that in Eq. (1),

〈Hi〉 = H0

[
cos (K · ri) cos(θ) êx + sin (K · ri) cos(θ) êy

+ sin(θ) êz

]
. (8)

We can now obtain the phases of HU with quantum
fluctuating spin density wave order, (A,B,C,D) shown in
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FIG. 2. (a) Phase diagram of HJ , for a spin S model in the classical limit S → ∞, exhibiting all phases of Fig. 1a. The
subscript of the labels (B′) and (C′) indicates the wavevector K = (Kx,Ky) of the spiral. Note that the phases A′, C′, B′,
D′ meet at a multicritical point, just as in Fig 1a. (b) and (c) show Kx, Ky, and the canting angle θ along two different
one-dimensional cuts of the phase diagram in (a). The phase diagram resulting from the spin-density wave analysis of the
Hubbard model (3) can be found in (d). Besides an additional ferromagnetic phase, denoted by (F′), we recover all the phases
of the classical phase diagram in (a). Part (e) and (f) show one-dimensional cuts of the spin-density wave phase diagram. In
all figures, solid (dashed) lines are used to represent second (first) order transitions.

Fig. 1b, in a simple step: the quantum fluctuations lead
to fluctuations in the orientation of the local magnetic or-
der, and so remove the R condensate leading to 〈R〉 = 0.
The Higgs fieldHi retains the condensate in Eq. (8) indi-
cating that the magnitude of the local order is non-zero.
In such a phase, spin rotation invariance is maintained
with 〈Ŝ〉 = 0, but the SU(2) gauge group has been ‘Hig-
gsed’ down to a smaller gauge group which describes the
topological order [17, 38–42]. The values of θ and K in
phases (A,B,C,D) obey the same constraints as the cor-
responding magnetically ordered phases (A′, B′, C′, D′).
In phase D, the gauge group is broken down to U(1), and
there is a potentially gapless emergent ‘photon’; in an in-
sulator, monopole condensation drives confinement and
the appearance of VBS order, but the photon survives in
a metallic, U(1) ‘algebraic charge liquid’ (ACL) state [43]
(which is eventually unstable to fermion pairing and su-
perconductivity [44]). The remaining phases A,B,C have
a non-collinear configuration of 〈Hi〉 and then only Z2

topological order survives [17]: such states are ACLs with
stable, gapped, ‘vison’ excitations carrying Z2 gauge flux
which cannot be created singly by any local operator.
Phase A breaks no symmetries, phase B breaks lattice ro-
tation symmetry leading to Ising-nematic order [17, 38],
and phase C has broken time-reversal and mirror sym-
metries (but not their product), leading to current loop
order [45]. All the 4 ACL phases (A,B,C,D) may also
become ‘fractionalized Fermi liquids’ (FL*) [4, 5] by for-
mation of bound states between the chargons and R; the
FL* states have a Pauli contribution to the spin suscep-
tibility from the reconstructed Fermi surfaces.

The structure of the fermionic excitations in the phases
of Fig. 1b, and the possible broken symmetries in the Z2

phases, can be understood from an effective Hamiltonian
for the chargons. As described in Supplemental Material

C [27], a Hubbard-Stratonovich transformation on HU ,
followed by the change of variables in Eqs. (4) and (5),
and a mean field decoupling leads to

Hψ = −
∑
i<j,s

tijZijψ
†
i,sψj,s − µ

∑
i,s

ψ†i,sψi,s

−
∑
i,s,s′

Hi · ψ†i,sσss′ψi,s′ . (9)

The chargons inherit their hopping from the electrons,
apart from a renormalization factor Zij , and experience
a Zeeman-like coupling to a local field given by the con-
densate of H: so the Fermi surface of ψ reconstructs in
the same manner as the Fermi surface of c in the phases
with conventional spin density wave order. Note that
this happens here even though translational symmetry is
fully preserved in all gauge-invariant observables; the ap-
parent breaking of translational symmetry in the Higgs
condensate in Eq. (8) does not transfer to any gauge in-
variant observables, showing how the Luttinger theorem
can be violated by the topological order [4–6] in Higgs
phases. However, other symmetries are broken in gauge-
invariant observables: Supplemental Material C [27] ex-
amines bond and current variables, which are bilinears in
ψ, and finds that they break symmetries in the phases B
and C noted above.

CP1 theory: We now present an alternative descrip-
tion of all 8 phases in Fig. 1 starting from the popular
CP1 theory of quantum antiferromagnets. In principle
(as we note below, and in Supplemental Material D [27])
this theory can be derived from the SU(2) gauge theory
above [46] after integrating out the fermionic chargons,
and representing R in terms of a bosonic spinon field zα
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by

Ri =

(
zi,↑ −z∗i,↓
zi,↓ z∗i,↑

)
, |zi,↑|2 + |zi,↓|2 = 1. (10)

However, integrating out the chargons is only safe when
there is a chargon gap, and so the theories below can
compute critical properties of phase transitions only in
insulators.

We will not start here from the SU(2) gauge theory,
but present a direct derivation from earlier analyses of
the quantum fluctuations of a S = 1/2 square lattice an-
tiferromagnet near a Néel state, which obtained the fol-
lowing action [47] for a CP1 theory over two-dimensional
space (r = (x, y)) and time (t)

S =
1

g

∫
d2rdt |(∂µ − iaµ)zα|2 + SB . (11)

Here µ runs over 3 spacetime components, and aµ is an
emergent U(1) gauge field. The local Néel order n is re-
lated to the zα by n = z∗ασαβzβ where σ are the Pauli

matrices. The U(1) gauge flux is defined modulo 2π,
and so the gauge field is compact and monopole con-
figurations with total flux 2π are permitted in the path
integral. The continuum action in Eq. (11) should be reg-
ularized to allow such monopoles. SB is the Berry phase
of the monopoles [48–50]. Monopoles are suppressed in
the states with Z2 topological order [17, 38], and so we
do not display the explicit form of SB .

The phases of the CP1 theory in Eq. (11) have been ex-
tensively studied. For small g, we have the conventional
Néel state, D′ in Fig. 1a, with 〈zα〉 6= 0 and 〈n〉 6= 0. For
large g, the zα are gapped, and the confinement in the
compact U(1) gauge theory leads to valence bond solid
(VBS) order [49, 50], which is phase D in Fig. 1b. A de-
confined critical theory describes the transition between
these phases [51].

We now want to extend the theory in Eq. (11) to avoid
confinement and obtain states with topological order. In
a compact U(1) gauge theory, condensing a Higgs field
with charge 2 leads to a phase with deconfined Z2 charges
[52]. Such a deconfined phase has the Z2 topological or-
der [17, 38–42] of interest to us here. So we search for
candidate Higgs fields with charge 2, composed of pairs of
long-wavelength spinons, zα. We also require the Higgs
field to be spin rotation invariant, because we want the
Z2 topological order to persist in phases without mag-
netic order. The simplest candidate without spacetime
gradients, εαβzαzβ (where εαβ is the unit antisymmet-
ric tensor) vanishes identically. Therefore, we are led
to the following Higgs candidates with a single gradient
(a = x, y)

P ∼ εαβzα∂tzβ , Qa ∼ εαβzα∂azβ . (12)

These Higgs fields have been considered separately be-
fore. Condensing Qa was the route to Z2 topological or-
der in Ref. 38, while P appeared more recently in Ref. 53.

T Tx Ix Rπ/2

zα εαβzβ εαβz
∗
β zα zα

Qx Qx Q∗x −Qx Qy

Qy Qy Q∗y Qy −Qx
P −P P ∗ P P

TABLE I. Symmetry signatures of various fields under time
reversal (T ), translation by a lattice spacing along x (Tx),
reflection about a lattice site with x → −x, y → y (Ix), and
rotation by π/2 about a lattice site with x → y, y → −x
(Rπ/2).

The effective action for these Higgs fields, and the
properties of the Higgs phases, follow straightforwardly
from their transformations under the square lattice space
group and time-reversal: we collect these in Table I.
From these transformations, we can add to the action
S → S +

∫
d2rdtLP,Q

LP,Q = |(∂µ − 2iaµ)P |2 + |(∂µ − 2iaµ)Qa|2 (13)

+ λ1P
∗ εαβzα∂tzβ + λ2Q

∗
aεαβzα∂azβ + H.c.

− s1|P |2 − s2|Qa|2 − u1|P |4 − u2|Qa|4 ,+ . . .

where we do not display other quartic and higher order
terms in the Higgs potential.

For large g, we have 〈zα〉 = 0, and can then determine
the spin liquid phases by minimizing the Higgs poten-
tial as a function of s1 and s2. When there is no Higgs
condensate, we noted earlier that we obtain phase D in
Fig. 1b. Fig. 1b also indicates that the phases A,B,C are
obtained when one or both of the P and Qa condensates
are present. This is justified in Supplemental Material
D [27] by a computation of the quadratic effective action
for the zα from the SU(2) gauge theory: we find just the
terms with linear temporal and/or spatial derivatives as
would be expected from the presence of P and/or Qa
condensates in LP,Q.

We can confirm this identification from the symmetry
transformations in Table I:
(A) There is only a P condensate, and the gauge-
invariant quantity |P |2 is invariant under all symmetry
operations. Consequently this is a Z2 spin liquid with
no broken symmetries; it has been previously studied by
Yang and Wang [53] using bosonic spinons.
(B) With aQa condensate, one of the two gauge-invariant
quantities |Qx|2−|Qy|2 orQ∗xQy+QxQ

∗
y must have a non-

zero expectation value. Table I shows that these imply
Ising-nematic order, as described previously [17, 38, 54].
We also require 〈Qx〉〈Q∗y〉 to be real to avoid breaking
translational symmetry.
(C) With both and P and Qa condensates non-zero we
can define the gauge invariant order parameter Oa =
PQ∗a + P ∗Qa (again 〈P 〉〈Q∗a〉 should be real to avoid
translational symmetry breaking). The symmetry trans-
formations of Oa show that it is precisely the ‘current-
loop’ order parameter of Ref. 19: it is odd under reflection
and time-reversal but not their product.
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A similar analysis can be carried out at small g, where
zα condenses and breaks spin rotation symmetry. The
structure of the condensate is determined by the eign-
modes of the zα dispersion in the A,B,C,D phases, and
this determines that the corresponding magnetically or-
dered states are precisely A′,B′,C′,D′, as in Fig. 1a.

We have shown here that a class of topological orders
intertwine with the observed broken discrete symmetries
in the pseudogap phase of the hole doped cuprates. The
same topological orders emerge from a theory of quan-
tum fluctuations of magnetically ordered states obtained
by four different methods: the frustrated classical an-
tiferromagnet, the semiclassical non-linear sigma model,
the spin density wave theory, and the CP1 theory supple-
mented by the Higgs fields obtained by pairing spinons

at long wavelengths. The intertwining of topological or-
der and symmetries can explain why the symmetries are
restored when the pseudogap in the fermion spectrum
disappears at large doping.
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