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We measure the response of cylindrical shells to poking and identify a stability landscape, which
fully characterizes the stability of perfect shells and imperfect ones in the case where a single defect
dominates. We show that the landscape of stability is independent of the loading protocol and the
poker geometry. Our results suggest that the complex stability of shells reduces to a low dimensional
description. Tracking ridges and valleys of this landscape defines natural phase-space coordinates
for describing the stability of shells.

From soda cans to aerospace engineering, the need of
high-fidelity estimates of the buckling loads of shell struc-
tures is of critical importance for reliance or to increase
payload capability [1–3]. Past laboratory testings with
cylindrical shells have suggested that defects strongly re-
duce the buckling resistance of thin-walled structures [4–
6]; thus, predicting the critical buckling loads is challeng-
ing and requires a priori knowledge of the defect specifics.
However, those defects are in general unknown and in
many cases difficult to identify. An attractive question
is to investigate if there is a more general framework for
characterizing the stability of shells and the classification
of defects. Promising paths have been recently proposed
for estimating the resistance of shells to buckling by prob-
ing them via poking from the side [7–9]. Additionally, a
new approach has recently been proposed where instead
of considering the linear instability of a shell with defects,
a finite, nonlinear destabilizing perturbation is imposed
on an otherwise perfect shell [10]. In this framework,
buckling dynamics are governed by fully nonlinear edge-
states located on the border of the basin of attraction
of a stable unbuckled fixed point. These strategies lay a
foundation for the more general description of the stabil-
ity of thin-walled structures; opening a new approach for
testing, predicting and controlling the stability of shell
structure. However, these concepts have never been ex-
plored experimentally.

Here we experimentally uncloak the underlying stabil-
ity structure of thin cylindrical shells by analyzing the
buckling of commercial aluminum cans. We investigate
the response and stability of cans when subjected to fi-
nite size lateral perturbations by laterally poking them
with a point probe. The force-displacement curves of the
probe at different axial loads unveil a rich landscape in
the three-dimensional phase space spanned by axial load,
probe displacement and probe force. Distinct regions of
stability, independent of the loading protocol and inde-
pendent on the poker geometry emerge. We specifically
identify a ridge characterizing the finite work required to

FIG. 1. a. Schematics of the experimental setup. b. The
lateral poker is a steel marble glued to a screw; two different
marble diameters were tested. c. Axial load FA and poker
force Fp for a typical experiment: (1) the shell is compressed
to F 0

A, and then the gap is fixed, (2) the poker is advanced
until buckling occurs. (3) The probe catches up with the
buckled shell (4).

force-trigger buckling, and we identify a valley leading
to a minimally buckled state and representing the easiest
route to buckle. We suggest that this stability landscape
is archetypal to the buckling of perfect shells as well as
imperfect ones; specifically in the case where one local-
ized geometric defect dominates. Importantly, the salient
topographical features are not aligned parallel to either
the axial or poking force axis, indicating that more suit-
able coordinates for analyzing the stability of thin shells
are defined by tracking ridges and valleys.

We investigate the stability of variety of real indus-
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n◦ fixed varied marble datasets

1 axial gap Dp 4.7 mm 89

2 axial gap Dp (single can) 4.7 mm 5

3 axial gap Dp 11.9 mm 14

4 axial load Dp 4.7 mm 39

5 Dp axial gap 4.7 mm 17

TABLE I. Protocols for the different biaxial tests.

trial cylindrical shells. A custom-made biaxial machine
(ADMET, Inc.) is used to axially compress commer-
cial aluminum cans and probe them from the side, as
sketched in Fig. 1(a). The vertical axis has a resolution
of 20 µm in displacement and 0.1 N force with a maxi-
mum force of 2,200 N. A blunt poker is installed in the
horizontal axis which also has a 20 µm displacement res-
olution. The poker force is measured by an S-beam load
cell with 5 mN resolution and a maximal load of 100 N.
We tested many brands and geometries of commercial
soda cans; however, in this letter we focus on a single
size and present experiments conducted with cylindrical
shells of radius R = 28.6 mm, a thickness t = 104 µm
(radius-to-thickness ratio R/t = 274) and a total height
L = 107 mm. Similar results were obtained for all brands
and geometries. Two types of poker tips are used, cov-
ering a range of diameters large enough to not puncture
the shell but much smaller than the shell diameter, as
shown in Fig. 1(b) and tabulated in Table 1. Within this
range results do not appear to depend on the geometry
of the poker tip.

Shells are initially compressed at a constant speed of
1 mm/min to a pre-set axial load FA = F 0

A. When the
pre-set load is reached, the gap is fixed and FA is moni-
tored while the horizontal poker is advanced towards the
shell at a constant speed 10 mm/min. The poker force Fp

is simultaneously recorded. Initially, Fp increases - simi-
larly to the first stages of reported shell pokings [11, 12]
- reaches a maximum, and then decreases. During this
time, FA does not change significantly. Eventually, when
Fp reaches zero, the shell buckles at the point of pok-
ing and a sharp drop of FA is observed, as shown for
a typical example in Fig. 1(c). Such a buckling event
is always accompanied by a sharp snapping sound. Al-
ternative loading protocols were also tested and did not
change the results. For instance, tests were performed
where instead of fixing the vertical gap, the vertical load
FA was kept constant through feedback (4 in Table 1).
This protocol consistently show the same typical dynam-
ics to the gap controlled protocols (1− 3, 5 in Table 1.).

The shell stability is investigated by poking individ-
ual cans from the side with F 0

A ranging from 100 N to
1100 N. Depending on F 0

A, testing reveals a plethora of

stereotypical responses, with three qualitatively different
regimes. For axial loads below 400 N, Fp monotonically
increases, as shown by the top two curves in Fig. 2(a).
In this regime the shells are stable and do not buckle. A
second regime emerges in the range between 400 N and
700 N the shells still do not buckle but Fp(Dp) curves
are more detailed and non-monotonic, exhibiting a max-
imum force, Fmax

p , at Dmax
p , and then a local minimum

force, Fmin
p , at Dmin

p , as shown for FA = 467 N and
FA = 675 N in Fig. 2(a). For FA > 700 N poking
eventually leads to buckling. Fp(Dp) shows a maximum,
(Dmax

p , Fmax
p ), however the force curve will no longer

show a minimum; instead, at a critical distance, Dc
p, the

poking force vanishes, Fp(Dc
p) = 0, and at this point

the shells becomes unstable, and buckles, as shown for
F 0
A = 683N , F 0

A = 859N and F 0
A = 1, 084N in Fig. 2(a).

When buckling, the point on the shells surface that was
in contact with the poker accelerates towards the inside
of the shell, away from the poker. It then comes to rest at
a new stable equilibrium location, Ds

p, as a single Miura-
like dimple [13] remains on the surface. Ds

p is probed
by advancing the horizontal poker until it comes back in
contact with the aluminum surface. Concomitantly with
these dynamics, buckling is also indicated by the sharp
decrease in FA, as shown in the insets of Fig. 2(a).

Up to this point we have focused on several typical ex-
amples, introducing three main possible scenarios for the
dynamics. Combining all measured force-displacement
data for a range of axial loads, Fp(Dp, FA) reveals a
well defined surface in the three-dimensional phase space
(FA, Dp, Fp), as shown in Fig. 2(b). It is important
to note that the response curves of the poker are re-
versible throughout the majority of the axial load and
poker force ranges. Fig. 2(c) presents these ranges, show-
ing reversibility even in the non-monotonic phases of the
response. This indicates the absence of irreversible plas-
tic deformation. The goal of this letter is to introduce
and highlight the significant topographical features of
this stability landscape and discuss their physical signifi-
cance. Although, the stability of each individual shell is
uniquely determined by its specific defects, we hypothe-
size that the stability landscape is a generic representa-
tion of the stability of cylindrical shells. The landscape
is similar for different shells of identical geometry as long
as – without poking – the axial load remains far enough
from the threshold where the shell spontaneously buckles.
We speculate that closer to the threshold for spontaneous
buckling, which depends on defects, the landscape will be
smoothly distorted.

Even with a side poker it is not always possible to trig-
ger buckling. At low axial loads F 0

A the cylindrical shell
will not buckle regardless of the poking displacement and
Fp(Dp) monotonically increases up to large poker pene-
trations of several millimeters. Under large axial loads,
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FIG. 2. a. Force-displacement curves for seven cans. Insets: axial load measurements. b. Three-dimensional representation
of independent poker force measurements (1 in Table 1). The surface generated by the curves defines a landscape, which
characterizes the stability of the thin shell. The color indicates Fp. c. Three-dimensional representation of consecutive non-
destructive poker force measurements on the same can, probing reversible elastic deformations without reaching buckling (2 in
Table 1).

Fp(Dp) shows distinct features, indicated schematically
in Fig. 3(a): the points of maximal force (Dmax

p , Fmax
p ),

the points of minimal force (Dmin
p , Fmin

p ), and the buck-
ling points for poker displacements (Dc

p, Fp(Dc
p) = 0).

After buckling the dimple snaps inwards to a position
(Ds

p, 0) [14]. Dmax
p decreases linearly as a function of

F 0
A, as shown in Fig. 3(b). The trajectory of the maxi-

mum Fmax
p is a monotonically decreasing function of F 0

A
and does not depend on the poker size (1 and 3 in Ta-
ble 1), as shown in Fig. 3(c). Importantly, the stability is
not altered if the compression is load-controlled instead
of displacement-controlled (4 in Table 1), as shown in
Fig. 3(b) and Fig. 3(c) [15]. The described characteris-
tics of the load-displacement curves can also be obtained,
with less noise, by non-destructively probing a single can
at different loads (2 in Table 1), as shown in the insets
of Fig. 3(b) and Fig. 3(c).

Buckling occurs for a sufficiently high axial load and
beyond a critical displacement of the poker Dc

p. In all
our experiments, Dc

p is at least two times larger than the
shell thickness, indicating that buckling in this case is
a nonlinear instability triggered by finite amplitude per-
turbations. The critical poker displacement Dc

p decreases

linearly as a function of F 0
A, as shown in Fig. 3(d). In a

range of F 0
A between 400 N and 600 N, Dc

p is compara-
ble to Ds

p, indicating that buckling cannot occur below
such loading. Moreover, if we first fix the position of the
poker, and then increase the axial load until buckling, we
find the same values of Dc

p (5 in Table 1), suggesting that
the stability landscape is independent of the loading and
poking history, as shown in the inset of Fig. 3(c).

In an intermediate range of axial loads centered around
F 0
A = 600 N, Fp(Dp) has a local minimum, (Dmin

p , Fmin
p ),

as sketched in Fig. 3(a). Following the minima of the
stability landscape down to zero poker force leads to a

minimally buckled state. Buckling does not occur for
loads smaller than this minimal buckling load.

Traditionally, the linear instability of cylindrical shells
against catastrophic buckling is primarily considered. At
a critical axial load any infinitesimal perturbation will
destabilize the system causing it to buckle. Real shells
have defects and are thus weaker; it is common to only
consider the linear stability of the now defected shell base
state [16]. Here we are examining the stability of shells
under conditions where they are linearly stable and a fi-

nite amount of work, Ep =
∫Dc

p

0
Fp(x)dx, is required to

destabilize them. When the axial load is larger, less work
is required to collapse the shell and as the axial load ap-
proaches the critical load for the linear instability, Ep

approaches zero (Fig. 3(e)) and in qualitative agreement
with recent computations of the stability of pressurized
spherical shells [9]. This consistency with recent com-
putations also suggests that our concept of landscape of
stability could be extended to any shell. In the linearly
stable system one may think of Ep as an energy barrier
to buckling that is decreased by defects.

Our results suggest that the stability of shells can
be coherently described by a two-dimensional surface in
the three-dimensional phase space (FA, Dp, Fp), schemat-
ically described in Fig. 4. It is an important conclusion
that the complex stability of commercial soda cans re-
duces to such a low dimensional description, as naively
such systems should be fully dominated by stochastic de-
fects rendering buckling thresholds unpredictable. The
stability landscape presents a number of important fea-
tures. The gap between the unstable fixed point Dc

p and
the stable one Ds

p, shown qualitatively in Fig. 2(b), is
a flat lake representing the unstable region surrounded
by a basin and protected by an energy barrier, Ep. In
the landscape, the energy barrier takes the form of a
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FIG. 3. All individual cans share universal stability features.
a. Definitions of the main features. b. Dmax

p at Fmax
p vs F 0

A.
Small dots, large dots and circles correspond to the protocols
1, 3 and 4 respectively, indicated in Table 1. Inset: single
can tests. c. Fmax

p vs F 0
A. d. Critical poker displacement

Dc
p required to trigger buckling (magenta) and displacement

Ds
p to catch up with the post-buckled surface (green) vs F 0

A.
Inset, hollow squares: the shell is first poked and then loaded
(5 in Table 1). The poker displacement Dmin

p at the minimum
of poking force is plotted with blue stars, and the minimum
poker force Fmin

p is reported in the second inset. e. The
elastic energy barrier, Ep vs F 0

A.

cliff to the left of the lake that is decorated by a ridge
R = (Dmax

p (F 0
A), Fmax

p (F 0
A)). Although buckling may

also suddenly occur in our experiments [17] by a vio-
lent drop of Fp to 0, in all our tests this never occurs for
Dp < Dmax

p ; thus, the ridge may indicate the separat-
ing line between a globally stable (i.e. defect-insensitive)
region to the left of the ridge and a defect-sensitive re-
gion to its right. It is thus potentially useful to envision
ridge-tracking as a new non-intrusive method for probing
the stability of shells as close as possible to their linearly
unstable limit.

Another useful feature of the stability landscape is the

FIG. 4. A schematic demonstration of the stability landscape
of shell buckling. The ridge is defined as the trajectory of
the maxima of poker force (Dmax

p (F 0
A), Fmax

p (F 0
A)). Following

the ridge down to zero poker force leads to the spontaneous
buckling (s.b.) . The valley is defined as the trajectory of
the local force minima (Dmin

p (F 0
A), Fmin

p (F 0
A)). Following the

valley down the zero poker force leads to a minimally buckled
state (m.b.), below which no buckling is possible. The ma-
genta and the green dashed lines corresponds to the unstable
(Dc

p) and stable (Ds
p) fixed points respectively

minimal buckling point: for FA smaller than a critical
value, the shells never buckle, consistent with the phe-
nomenological design rule set by NASA [4] and hinted
to by calculations of edge states [10]. Although in this
regime there is no buckling (Fp 6= 0), the landscape is not
featureless. Instead the curve V = (Dmin

p (F 0
A), Fmin

p (F 0
A)

highlights a valley with a very steep slope leading to the
tip of the lake where Dc

p = Ds
p. This tip is the point of

minimal buckling, where buckling does not result in any
measurable deformation of the shell.

Our results suggest an appealing and generic frame-
work for studying the stability of thin-walled structures.
Shell buckling is characterized by the topographical fea-
tures of the stability landscape, namely an unstable flat
lake surrounded by a basin with a ridge and valley of
stability. It is tempting to consider that the ridge and
valley indicate the most natural coordinate system for
probing the stability of such structures instead of the
somewhat arbitrary coordinates F 0

A and Dp. Thus, sys-
tematic tracking of the ridge and the valley of the stabil-
ity landscape is likely to have a significant impact in the
development of new non-destructive testing protocols in
structural engineering.

We have shown that buckling of real defected cylin-
drical shells is underscored by a universal stability land-
scape. By probing away from the linearly unstable state
we are exposing the underlying stability characteristics of
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the near-perfect shell. The probe induces a localized shell
deformation; thus, illuminating how a dominant localized
defect modifies the shell stability. The local geometric de-
fect induced by the poker, interact with intrinsic defects
in the shell material. Consequently, we speculate that at
high axial loads a smoothly distorted stability landscape
encodes the influence of localized intrinsic defects.

Here, we present the landscape for a single poker mea-
surement revealing the influence of a dominant localized
defect. Likewise, a system poked from several directions
simultaneously with numerous pokers will show a differ-
ent stability landscape. In fact, the full stability land-
scape is hyper-dimensional and any probing geometry

defines its own section of the full stability landscape; a
section spanned by the amplitude of that specific prob-
ing mode, the probe force and axial load [10]. While the
full stability landscape lies in the hyperspace spanned by
all possible probe geometries and associated force am-
plitudes, it is reasonable to expect that the single local-
ized defect case studied in this letter, is of practical im-
portance and may inform the design rules of thin-walled
structures, such as rockets, airplanes, and beer cans.
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