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Abstract

Statistical reaction theories such as Hauser-Feshbach assume that branching ratios follow Bohr’s

compound nucleus hypothesis by factorizing into independent probabilities for different channels.

Corrections to the factorization hypothesis are known in both nuclear theory and quantum

transport theory, particularly an enhanced memory of the entrance channel. We apply the

Gaussian orthogonal ensemble to study a complementary suppression of exit channel branching

ratios. The combined effect of the width fluctuation and the limitation on the transmission

coefficient can provide a lower bound on the number of exit channels. The bound is demonstrated

for the branching ratio in neutron-induced reactions on a 235U target.
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Introduction. Statistical approximations are extremely useful in nuclear physics, particu-

larly in reaction theory. Examples are the Hauser-Feshbach and Weisskopf-Ewing formulas

for reaction cross sections [1–3]. The underlying assumption of both is the factorizability

of the cross section σab from one channel to another as σab ∼ ΓaΓb, where Γi is the average

decay width through a channel. The factorization follows from Bohr’s compound nucleus

hypothesis [4], that the decay of a heavy nucleus has no memory of how it was formed. How-

ever, factorization is only justified when the reaction takes place through discrete resonances

and there are many channels contributing to each decay mode. Otherwise, the fluctuations

in the widths of the resonance gives rise to the well-known “width fluctuation correction”

(WFC) to the statistical models [5], most prominently as the “elastic enhancement factor.”

There is now an extensive literature on the subject cited in Refs. [6] and [7]. Similar effects

in electron propagation through mesoscopic conductors are known as the “weak localization

correction” and the “dephasing” effect [8, Sect. IV.C and IV.E].

While the nuclear correction is best known as an entrance channel effect, it can also be

present in exit channels if the reaction branching ratios highly favor a decay mode with

large fluctuations [9]. In this work we show that such situations can lead to effects large

enough to provide bounds on the number of channels in the decay mode, even though the

measurements are on averaged quantities and not on their fluctuations. This study was

motivated in part by the quest for a theory of fission dynamics based on nucleon-nucleon

interactions. That requires an understanding not only of the distribution of the fission

channels but their coupling matrix elements to the other states.

The GOE statistical model. The factorization hypothesis and other statistical aspects of

reaction theory can be tested theoretically by models that consider ensembles of Hamilto-

nians that mix the constituent configurations. The Gaussian orthogonal ensemble (GOE)

has been especially successful in this regard [6, 7]. The reaction theory is expressed in the

matrix equations

K = πγT
1

E −H
γ (1)

S =
1− iK
1 + iK

(2)

giving for the non-elastic cross sections [10]

σnf =
π

k2n

∑
c∈f

|Snc|2 . (3)
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In Eq. (1) K is a matrix of dimension N ch × N ch, where N ch is the number of reaction

channels in the model. H is the Nµ ×Nµ Hamiltonian matrix for the Nµ internal states in

the model. The internal states are connected to the channels by the N ch×Nµ reduced-width

matrix γ. Eq. (2) relates the K-matrix to the familiar S-matrix of scattering theory. There

is an additional overall phase factor in Eq. (2) which plays no role in the reaction cross

sections. In Eq. (3) n is the entrance channel, f is a set of exit channels that are grouped

together in an experimental cross section, and c are the individual channels. The cross

section depends explicitly on the entrance channel energy En via the neutron wave-number

kn =
√

2EnMn, with Mn the reduced mass.

In the GOE statistical model, the Hamiltonian H is sampled from the distribution [11]

Hµ,µ′ = Hµ′,µ = vµ,µ′ (1 + δµ,µ′)
1/2 , (4)

where µ ≥ µ′ and vµ,µ′ is a Gaussian-distributed random variable. The ensemble is com-

pletely specified by Nµ and the r.m.s. Hamiltonian matrix element 〈v2〉1/2. Here we shall

characterize the GOE ensemble by D, the average level spacing in the middle of the distri-

bution. The spacing is related to the matrix elements by D = π〈v2〉1/2N−1/2µ . The γ matrix

associated with a GOE Hamiltonian can be assumed to have a diagonal structure of the

form γ|µ,c = γcδµ,c. In this work, we also make the simplifying assumption that the γc are

equal for all channels within a given decay mode f . When the matrix is transformed to the

basis diagonalizing the GOE Hamiltonian, the amplitudes will be distributed over eigen-

states according the Porter-Thomas distribution [12] with a number of degrees of freedom

equal to the number of channels Nf . It will be convenient to define an effective K-matrix

decay rate for the different modes ΓKf as

ΓKf =
2π

Nµ

∑
c∈f

γ2c . (5)

If all the ΓKf are small compared to D, the average S-matrix decay widths satisfy

Γf ≈ ΓKf . (6)

Note also that N ch
n = 1 for the entrance channel; its reduced width controls the total reaction

cross section [13].

The calculations reported below were carried out with codes that constructed the GOE

distribution by Monte Carlo sampling of H and applying Eqs. (1-3). The codes and input

data are provided in the Supplementary Material [14].
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Application to the branching ratio 235U(n,f)/235U(n,γ). Here we show by a physical ex-

ample that cross-section branching ratios that heavily favor some particular exit channel can

be severely suppressed. The behavior follows from the GOE statistical model as formulated

in the last section and is thus universal. Our example is the neutron-induced reactions on

235U. For neutron energies below ∼ 10 keV the predominant reactions are in the s-wave

leading to capture by gamma emission or fission. An important quantity is α−1, the ratio

of the fission cross section σF to capture cross section σcap, α
−1 = σF/σcap. It varies in the

range α−1 ∼ 2-3 in the 1 - 15 keV energy range[15]. The capture widths can assumed to be

constant over this energy interval, since the interval is very small compared to the excitation

energy (∼ 6.5 MeV) and capture takes place through many channels. The same is true of

the level density, since the effective temperature is of the order of 0.5 MeV. Table I gives

approximate values of measured D and Γcap which will be used to determine the parameters

of the K-matrix [16] We will examine the cross section at En = 10 keV; the experimental

TABLE I: Experimental observables for neutron-induced reactions on 235U. The cross section data

is at a neutron bombarding energy En = 10 keV. The last two entry are the ratio of cross sections,

show the range of the ratios as well as the value at 10 keV.

Observable Value Source

D 0.45± 0.05 eV [17, 23]

Γcap 38± 3 meV [17]

σcap 1.05± 0.07 b [18, 19]

σF 2.96± 0.06 b [18, 19]

α−1(10) 2.8± 0.2 [19, 20]

α−1(1− 15) 2-3.1 [18]

values averaged over a 1 keV are also given in Table I.

The K-matrix reduced-width parameters are determined as follows. The capture width

is small compared to D and many channels contribute so we can safely apply Eq. (6); the

equivalent Γcap is shown in Table II. The coupling to the entrance channel depends on En

and is usually parameterized by the strength function S0 as

〈Γn〉
D

= S0E
1/2. (7)
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From total cross sections one finds S0 ≈ 1± 0.1× 10−4 eV−1/2 [22, 23],[24, Fig. 47] and we

use that value to determine the entry in Table II. We note that this value is consistent with

the coupled-channel analysis of Ref. [25]. For the fission reduced width, we first make the

factorization (Hauser-Feshbach) approximation and assume that the nominal decay widths

scale with the cross sections, i.e. ΓKF /Γ
K
cap = σF/σcap.

TABLE II: K-matrix parameters (eV) describing observed cross sections at En = 10 keV in Hauser-

Feshbach theory and assuming Γ << D. We have also include the parameters from the ENDF/B-

VII.1 evaluation.

ΓKcap ΓKF ΓKn

this work 0.038± 3 0.105± 0.01 0.010± 0.001

ENDF 0.039 0.289 0.0097

The number of channels and states in the K-matrix are still to be specified. As presented,

the model is independent of the number of states as long as that number is large. We shall

take Nµ = 50 − 100. The capture channels do not show large fluctuations and one can

therefore assume that N ch
cap >> 1; we take N ch

cap = 10 in our modeling. The number of fission

channels is not well known [26] and we consider two possibilities: model A with one fission

channel and model B with five fission channels.

With all parameters now specified in the GOE K-matrix, we can compute the average

cross sections and branching ratios. These are shown in Table III. In model A, one sees

TABLE III: Average reaction cross sections at En = 10 keV, comparing models A and B with

experiment. The uncertainties on the calculated values are the r.m.s. sample-to-sample fluctuations

associated with the random matrix ensemble of the internal states, taking a 1 keV averaging

interval. We have also included in the table the impact on the elastic scattering S-matrix.

N ch
F σF (b) σcap (b) α−1 |Snn|2

Exp. 2.96± 0.21 1.06± 0.07 2.8

A 1 1.66± 0.05 1.39± 0.05 1.20± 0.07 0.954

B 5 2.28± 0.10 1.00± 0.06 2.3± 0.11 0.950
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TABLE IV: Average fission widths ΓKF required to reproduce the observed cross-section ratio

α−1 = 2.8 ± 0.2 in various models. HW: Hauser-Feshbach; HW/WFC; Hauser-Feshbach with

width fluctuation correction from Eq. (8); KtoS: Eqs. (1-3). The uncertainty of the observed α−1

is propagated through the models to give the uncertainty bars in the table. Units are eV.

Model N ch
cap N

ch
F HW HW/WFC KtoS

A 10 1 0.107± 0.008 0.46± 0.06 none

B 10 5 0.107± 0.008 0.13± 0.01 0.136± 0.01
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FIG. 1: Cross section ratio α−1 = 〈σF 〉/〈σcap〉 as a function of average fission width ΓKF assuming

a single fission channel. Solid line: Eq. (1-3). Dotted line: Hauser-Feshbach approximation, i.e.

α−1 = ΓKF /Γ
K
cap. Dashed line: Hauser-Feshbach including the WFC correction, Eq. (8). Blue band:

experimental range, taking uncertainty from Table I. Widths are the statistical errors associated

with the 1 keV cross-section averaging interval.

an enhancement of the capture cross section and a corresponding suppression of the fission

cross section. Clearly factorization is violated.

Let us see if we can reproduce the experimental branching ratio simply by increasing the

fission width, but keeping only a single channel. Taking the width as a free parameter, we

obtain the branching ratios shown as the solid line in Fig. 1. Also, we show in Table IV the

values of ΓKF required to fit the observed branching ratio. Model A saturates at α−1 ∼ 2.0;

there is no reasonable value of ΓKF that can reproduce experiment. Thus, we can exclude
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fission models having only a single channel, based solely on average cross section data. Of

course, the fluctuation in cross-section ratios also carries information on the number of

channels and is the basis of previous estimates that the effect channel count is of the order

of a few. Finally, one can see from the second line of Table IV that model B can fit the data

taking the decay with close to the Hauser-Feshbach value.

Discussion. The exit channel suppression comes about by two mechanisms that can be

understood as follows. The part coming from Porter-Thomas fluctuations can be analyzed

at the level of the K-matrix: assuming isolated resonances, the branching ratio can be

calculated as in Ref. [22],

α−1 =

〈
ΓKF∑
f ΓKf

〉/〈
ΓKcap∑
f ΓKf

〉
. (8)

The results are shown as the dashed line in Fig. 1. For ΓKF = 0.105 eV, Eq. (8) gives a WFC

factor of 0.43, close to that of the full S-matrix treatment. However, to explain the observed

α−1, we have to go to much larger fission width, ΓKF ≈ 0.46 eV, as may be seen in Table

IV. At that width the WFC factor is 0.23 in the HF/WFC treatment and 0.16 in the full

S-matrix treatment. Increasing ΓKF further does not raise the S-matrix value significantly.

We attribute the additional suppression in the S-matrix treatment to the constraint on

statistical decay rates Wf imposed by the Bohr-Wheeler formula [27]

Wf = Γf =
1

2π
DT, (9)

where T is the transmission coefficient of the channel. General considerations of detailed

balance require T ≤ 1. The nominal fission width in the K-matrix reduced width is close to

the bound, so it is not unexpected that there is a further suppression in the S-matrix.

Conclusion. We have demonstrated that branching ratios can be a useful observable in

the study of fission dynamics near threshold. Namely, effects not included in the Hauser-

Theory can severely constrain the number of exit channels. In the example presented here,

the energy of the fissioning nucleus is above the fission barrier. It might be of interest to

apply the analysis to below-barrier fission as well [28]. There one sees sharp peaks in the

fission cross section, ascribed to individual states along the fission path. These states act as

fission channels with N ch
F = 1 in the K-matrix modeling.

We confirmed the generality of our conclusion by exploring a variety of channel number

and transmission combinations. Several examples are provided in Supplemental Material.
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The repository also contains the main code implementing Eq. (1-4) and the script to compute

the branching ratio and its uncertainty.
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