

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Order Parameters and Color-Flavor Center Symmetry in QCD

Aleksey Cherman, Srimoyee Sen, Mithat Ünsal, Michael L. Wagman, and Laurence G. Yaffe

> Phys. Rev. Lett. **119**, 222001 — Published 29 November 2017 DOI: 10.1103/PhysRevLett.119.222001

Order parameters and color-flavor center symmetry in QCD

Aleksey Cherman,^{1,*} Srimoyee Sen,^{2,†} Mithat Ünsal,^{3,‡} Michael L. Wagman,^{1,4,§} and Laurence G. Yaffe^{4,¶}

¹Institute for Nuclear Theory, University of Washington, Seattle, WA 98105 USA

²Department of Physics, University of Arizona, Tucson, AZ 85721 USA

³Department of Physics, North Carolina State University, Raleigh, NC 27695 USA

⁴Department of Physics, University of Washington, Seattle, WA 98105 USA

Common lore suggests that N-color QCD with massive quarks has no useful order parameters which can be non-trivial at zero baryon density. However, such order parameters do exist when there are $n_{\rm f}$ quark flavors with a common mass and $d \equiv \gcd(n_{\rm f}, N) > 1$. These theories have a \mathbb{Z}_d color-flavor center symmetry arising from intertwined color center transformations and cyclic flavor permutations. The symmetry realization depends on the temperature, baryon chemical potential and value of $n_{\rm f}/N$, with implications for conformal window studies and dense quark matter.

Introduction. Gauge theories are ubiquitous in many areas of physics. But defining order parameters in gauge theories is notoriously subtle. For example, in pure SU(N) Yang-Mills (YM) theory, the simplest non-trivial order parameter is the expectation value of a line operator:

$$\langle \operatorname{tr} \Omega \rangle = \langle \operatorname{tr} \mathcal{P} e^{i \int_0^L dx_1 A_1} \rangle, \qquad (1)$$

when the x_1 dimension is compactified with circumference L. If x_1 is regarded as Euclidean time, then the gauge theory functional integral with periodic boundary conditions calculates the thermal partition function with temperature T = 1/L. The thermal expectation value (1) is the Polyakov loop confinement order parameter for the \mathbb{Z}_N center symmetry of pure YM, whose realization changes with temperature.

Adding fundamental representation quarks $\{q_a\}, a =$ $1, 2, \dots, n_{\rm f}$ turns YM theory into QCD, the theory of strong interactions. But the quarks explicitly break the \mathbb{Z}_N center symmetry. The Polyakov loop ceases to be an order parameter. With massless quarks, the flavor symmetry is $G = SU(n_f)_V \times SU(n_f)_A \times U(1)_Q$ and the chiral condensate $\langle \sum_a \bar{q}_a q_a \rangle$ is an order parameter for the $SU(n_{\rm f})_A$ chiral symmetry, whose realization depends on temperature. But if the quarks are massive, as in realworld QCD, then chiral symmetry is explicitly broken and $\langle \bar{q}_a q_a \rangle$ ceases to be an order parameter. The remaining vector-like $U(n_{\rm f})$ symmetry cannot break spontaneously at vanishing baryon number density [1], leading to the common understanding that QCD with dynamical massive quarks lacks non-trivial order parameters at zero baryon density.

However, QCD with massive quarks can possess symmetries which intertwine center and flavor transformations. Our discussion generalizes earlier work [2–9], showing that special boundary conditions (BCs) for quarks can lead to an unbroken \mathbb{Z}_3 symmetry. These works interpreted this choice as defining a "QCD-like" theory that they termed " \mathbb{Z}_3 -QCD". (See also Refs. [10–13].) Here, we generalize and reinterpret these BCs and use them to define order parameters for both quantum and thermal phase transitions in QCD. **Color-flavor center symmetry.** Center symmetry [14] acts only on topologically non-trivial observables. It can be viewed as a topologically non-trivial gauge transformation, with the action

$$\langle \operatorname{tr} \Omega \rangle \to \omega \langle \operatorname{tr} \Omega \rangle, \qquad \omega \equiv e^{2\pi i/N}.$$
 (2)

By itself, this is not a symmetry when fundamental representation fields are present in the theory.

We assume $n_{\rm f}$ quark flavors have a common mass m_q , so the theory (on \mathbb{R}^4) has a $U(n_{\rm f})_V$ flavor symmetry. We consider flavor-twisted quark boundary conditions,

$$q_a(x_1+L) = \mathcal{U}^{ab} q_b(x_1) , \qquad (3)$$

where \mathcal{U} is a $U(n_{\rm f})$ matrix, and regard x_1 as a spatial direction. The flavor twist \mathcal{U} may be assumed diagonal without loss of generality. The $SU(n_{\rm f})_V$ flavor subgroup has center $\mathbb{Z}_{n_{\rm f}}$, which motivates a $\mathbb{Z}_{n_{\rm f}}$ symmetric choice of BCs [2–9] for which the set of eigenvalues of \mathcal{U} is invariant under multiplication by elements of $\mathbb{Z}_{n_{\rm f}}$. If the theory is to retain charge conjugation and x_1 -reflection symmetries (suitably redefined), then the set of eigenvalues must also be invariant under complex conjugation. Two possibilities result, namely $n_{\rm f}$ 'th roots of +1 or -1,

$$\mathcal{U} = \operatorname{diag}(1, \nu, \cdots, \nu^{n_{\mathrm{f}}-1}), \qquad \nu \equiv e^{2\pi i/n_{\mathrm{f}}}, \qquad (4a)$$

or

$$\mathcal{U} = \operatorname{diag}(\nu^{1/2}, \nu^{3/2}, \cdots, \nu^{n_{\mathrm{f}}-1/2}).$$
 (4b)

With the BCs in (4), the finite L flavor symmetry is reduced to $G_{\rm L} = U(1)_V^{n_{\rm f}-1} \times U(1)_A^{n_{\rm f}-1} \times U(1)_Q \subset G$.

The key observation is that if

$$d \equiv \gcd(n_{\rm f}, N) > 1\,,\tag{5}$$

then the circle-compactified theory, with either boundary condition (4), also remains invariant under an intertwined $\mathbb{Z}_d \subset \mathbb{Z}_N \times \mathbb{Z}_{n_t}^{\text{perm}}$ color-flavor center (CFC) symmetry, generated by the combination of a center transformation with phase $\omega^{N/d} = e^{2\pi i/d}$ and a \mathbb{Z}_d cyclic flavor permutation. To see this note that, for either choice (4), a \mathbb{Z}_d center transformation effectively permutes the eigenvalues of \mathcal{U} . Combining the center transformation with the opposite cyclic flavor permutation (part of $U(n_f)_V$) leaves the boundary condition invariant.

CFC symmetry intertwines center and flavor transformations and so has both local and extended order parameters. CFC order parameters include Polyakov loops such as (1) with winding numbers which are non-zero mod d, as well as $\mathbb{Z}_{n_{\rm f}}$ Fourier transforms of fermion bilinears, $\mathcal{O}_{\Gamma}^{(p)} \equiv \sum_{a=1}^{n_{\rm f}} \nu^{-ap} \bar{q}_a \Gamma q_a$, where Γ is an arbitrary Dirac matrix and $p \mod d \neq 0$. The action of the \mathbb{Z}_d CFC symmetry is

$$\operatorname{tr} \Omega^p \to \omega^{Np/d} \operatorname{tr} \Omega^p, \quad \mathcal{O}_{\Gamma}^{(p)} \to \nu^{n_{\mathrm{f}} p/d} \, \mathcal{O}_{\Gamma}^{(p)}. \tag{6}$$

We note, however, that $\mathcal{O}^{(p)}$ also transforms non-trivially under pure flavor permutation transformations, while tr Ω^p only transforms non-trivially under the combined CFC color-flavor transformations. In this sense, tr Ω^p is the natural order parameter for CFC symmetry.

Center symmetry and confinement. Consider the Polyakov loop connected correlator in QCD compactified on x_1 with circumference L,

$$\langle \operatorname{tr} \Omega(\vec{x}) \operatorname{tr} \Omega^{\dagger}(0) \rangle_{\operatorname{conn}} \equiv e^{-F(r)}, \qquad r = |\vec{x}|.$$
 (7)

Suppose that $F(r) \sim E r$ as $r \to \infty$. When $n_f = 0$, the theory has a \mathbb{Z}_N center symmetry. If the ground state is \mathbb{Z}_N invariant, then no intermediate state created by a local operator acting on the vacuum can contribute to the correlator. All contributions to the correlator (7) must involve flux tubes which wrap the compactified dimension, so that $E = L\sigma$ with σ the string tension.

On the other hand, if center symmetry is broken, explicitly or spontaneously, then intermediate states created by local operators can also contribute to the correlator (7). The minimal energy E need not grow with L. This is interpreted as a signal of string breaking. It is tempting to conclude that there is a tight link between unbroken center symmetry and confinement of static test quarks by unbreakable flux tubes.

Now suppose that $d = \gcd(n_{\rm f}, N) > 1$, all quarks have a common mass m_q , and we engineer the existence of \mathbb{Z}_d CFC symmetry by using the BCs (4). As seen above, CFC symmetry acts on both Polyakov loops and appropriate local operators. Intermediate states created by local operators transforming the same as tr Ω under all unbroken symmetries can contribute to the correlator (7). For example, states created by $\mathcal{A} \equiv \sum_{a=1}^{n_f} \nu^{-ap} \bar{q}_a \gamma_1 D_1 q_a$ and $\mathcal{B} \equiv \sum_{a=1}^{n_f} \nu^{-ap} \bar{q}_a \gamma_1 q_a$ can contribute to correlators of Re tr Ω^p and Im tr Ω^p , respectively, even when CFC symmetry is not spontaneously broken. Consequently, the string tension as defined by the asymptotic behavior of the correlator (7) vanishes regardless of the realization of the \mathbb{Z}_d center symmetry.

Conformal window. Let $x \equiv n_f/N$, and set to zero the common quark mass and temperature, $m_q = T = 0$. If $x > \frac{11}{2}$, QCD becomes an infrared-free theory. For x below some $x_{\chi} < \frac{11}{2}$, chiral symmetry is believed to

FIG. 1. Possible phase structures of massless QCD as a function of $x = n_{\rm f}/N$. The chiral and CFC symmetry realizations change at some $x = x_{\chi}$ and $x = x_{\rm CFC}$, respectively.

be spontaneously broken. In the intermediate range of values $x \in (x_{\chi}, \frac{11}{2})$, called the conformal window, QCD flows to a non-trivial infrared (IR) fixed point without chiral symmetry breaking. The value of x_{χ} has been the subject of intensive lattice investigations (see, e.g., Refs. [15–24]). The existence of an IR-conformal phase can be seen most easily in the Veneziano large N limit of QCD, where x is fixed along with the 't Hooft coupling $\lambda \equiv g^2 N$ as N increases. If $\epsilon \equiv \frac{11}{2} - x \to 0^+$, perturbation theory self-consistently implies the existence of an IR fixed point with a parametrically small coupling [25, 26], $\lambda_{\rm IR} = \frac{64}{75}\pi^2 \epsilon \ll 1$.

One may show that \mathbb{Z}_d CFC symmetry is spontaneously broken in the conformal window, at least at large N. The Veneziano limit is taken through a sequence of values for which $d = \gcd(n_{\rm f}, N)$ is fixed and greater than 1, while the ratio $x = n_{\rm f}/N$ approaches a non-zero limit. Hence, the Polyakov loop (1) remains an order parameter for the intertwined \mathbb{Z}_d center symmetry. The CFC realization may be determined by computing the quantum effective potential $V_{\rm eff}(\Omega)$. Here the loop expansion is controlled by the small value of λ at all scales when $\epsilon \ll 1$. The following small- ϵ analysis is thus valid for any circumference L.

Classically, $V_{\text{eff}}(\Omega)$ is zero. Using standard methods [14, 27], at one loop one finds $V_{\text{eff}}(\Omega) = V_{\text{g}}(\Omega) + V_{\text{f}}(\Omega)$ with gluon and fermion contributions given by

$$V_{\rm g}(\Omega) = -\frac{2}{\pi^2 L^4} \sum_{n=1}^{\infty} \frac{1}{n^4} \left(|\operatorname{tr} \Omega^n|^2 - 1 \right), \tag{8}$$

and

$$V_{\rm f}(\Omega) = \frac{2}{\pi^2 L^4} \sum_{n=1}^{\infty} \frac{1}{n^4} \left(\operatorname{tr} \mathcal{U}^{-n} \operatorname{tr} \Omega^n + \operatorname{tr} \mathcal{U}^n \operatorname{tr} \Omega^{-n} \right)$$
$$= \frac{2}{\pi^2 L^4 n_{\rm f}^3} \sum_{n=1}^{\infty} \frac{(\pm 1)^n}{n^4} \left(\operatorname{tr} \Omega^{n_{\rm f} n} + \operatorname{h.c.} \right) . \tag{9}$$

The upper/lower sign refers to BCs (4a)/(4b). As required, V_{eff} is invariant under CFC symmetry. To determine the minima of V_{eff} note that $V_{\text{g}} = O(N^2)$ while, due to our imposition of flavor-twisted BCs, $V_{\text{f}} = O(N^{-2})$. At large N, the minima of V_{eff} are entirely determined by the gluonic contribution V_{g} , which favors coinciding eigenvalues, $\Omega \propto 1$. Consequently, when $\epsilon = \frac{11}{2} - x \ll 1$ the CFC symmetry is spontaneously broken at any L. On the other hand, at the pure Yang-Mill point, x = 0, center symmetry is certainly expected to be unbroken at large L, and standard large N counting arguments imply that the intertwined center symmetry should remain unbroken for sufficiently small x. Hence, there must be at least one transition at some $x = x_{\text{CFC}}$ where the realization of the CFC symmetry changes. Logically possible phase diagrams are sketched in Fig. 1.

Turning on $m_q > 0$ or T > 0 gives a richer phase structure. With $\epsilon \ll 1$ and small m_q , the theory develops a new strong scale, $\Lambda_m \sim m_q e^{-75/(8\epsilon^2)}$. When L becomes comparable to Λ_m^{-1} we expect a \mathbb{Z}_d center-restoring phase transition. We also expect a CFC-restoring phase transition at a non-zero temperature $T_* \sim 1/L$ when $m_q = 0$, similar to the large N deconfinement transition in $\mathcal{N} = 4$ super-Yang-Mills theory on $S^3 \times S^1$ [28, 29].

Now consider N = 3 and massless quarks. If the $n_{\rm f} = 15$ IR fixed point is weakly coupled, as widely believed, then our above calculation applies and \mathbb{Z}_3 center symmetry is spontaneously broken at $n_{\rm f} = 15$. At $n_{\rm f} = 3$, lattice calculations [6] with boundary conditions (4a) are consistent with unbroken \mathbb{Z}_3 center symmetry when $L\Lambda \gg 1$. So for integer values of $x = n_{\rm f}/3$, there must be a minimal value $2 \leq x_{\rm CFC} \leq 5$ where the \mathbb{Z}_3 CFC symmetry first becomes spontaneously broken.

Dense quark matter. Consider the phase diagram of QCD with $N = n_{\rm f} = 3$ and a common quark mass m_q , as a function of the $U(1)_Q$ chemical potential μ and temperature T. Previously known symmetry principles only suggest the existence of a curve $T(\mu)$ in the (T, μ) plane below which lies a superfluid phase with spontaneously broken $U(1)_Q$ symmetry, leading to a hypothesis of continuity of quark matter and hadronic nuclear matter [30]. Consideration of CFC symmetry implies the existence of additional phase structure when QCD is compactified with CFC-preserving BCs on a spatial circle large compared to other spatial scales.

First, consider the small T, small μ regime. Here lattice studies [6] imply that $\langle \operatorname{tr} \Omega \rangle = 0$ at large L. At high temperatures, $T \gg \max(\Lambda, \mu)$, $\langle \operatorname{tr} \Omega \rangle$ also vanishes, because the dynamics on spatial scales large compared to $(g^2T)^{-1}$ are described by pure 3D YM theory [27], which confines. We expect this high-temperature region to be smoothly connected to the region near $T = \mu = 0$. However, as we next discuss the CFC symmetry realization behaves non-trivially when $T \to 0$ with $\mu \gg \max(\Lambda, m)$. A simple phase diagram consistent with our results is sketched in Fig. 2.

High density QCD, $\mu \gg \Lambda$, is believed to be in a "color-flavor-locked" (CFL) color-superconducting phase [31] when $T < T_{\text{CFL}}$. The phase transition temperature T_{CFL} is comparable to the superconducting gap,

FIG. 2. (Color online.) Sketch of a possible phase diagram of circle-compactified $SU(3)_V$ symmetric QCD at $m_q > 0$, as a function of T and μ , in the large L limit.

 $T_{\rm CFL} \sim \Delta \sim \mu g^{-5} e^{-(3\pi^2/\sqrt{2})/g}$. Electric and magnetic gluons develop Debye and Meissner static screening masses, respectively, both of order $g\mu$ in the CFL phase [32, 33]. For $T_{\rm CFL} < T \lesssim g\mu$, low frequency magnetic fluctuations experience Landau damping. Consequently, for $T \lesssim g\mu$ the relevant gauge coupling is small, $g(\mu) \ll 1$, and cold dense quark matter is weakly coupled.

In typical gauge-dependent language, CFL superconductivity is driven by an expectation value for diquark operators, $\langle q_i^a C \gamma_5 q_j^b \rangle \propto \epsilon^{abK} \epsilon_{ijK}$ [31]. The uncontracted flavor indices on the "condensate" might lead one to think that flavor permutation symmetry is broken, automatically implying accompanying spontaneous breaking of the CFC symmetry [7] when x_1 is compactified with BCs (4). But this gauge-dependent language is misleading. The true gauge-invariant order parameters for spontaneous breaking of chiral and $U(1)_Q$ symmetries, schematically $\langle \bar{q}C\gamma_5\bar{q}qC\gamma_5q \rangle$ and $\langle (qC\gamma_5q)^3 \rangle$, are $SU(n_{\rm f})_V$ singlets [31]. So the development of CFL superconductivity does not, ipso facto, imply spontaneous breaking of CFC symmetry in the circle compactified theory.

To study the CFC symmetry realization when $\mu \gg \Lambda$ and $T \ll g\mu$, we examine the one-loop effective potential for Ω , which is the sum of gluonic and fermionic contributions, $V_{\rm eff}(\Omega) = V_{\rm g}(\Omega) + V_{\rm f}(\Omega)$. The loop expansion is controlled by $g(\mu) \ll 1$ and is applicable for all L. For $T < T_{\rm CFL}$, gluons have effective masses $m_{\rm g} \sim g\mu$ due to a combination of Debye screening and the Meissner effect from color superconductivity [32, 33]. As with any one-loop holonomy effective potential contribution from massive adjoint bosons, we thus expect

$$V_{\rm g}(\Omega) = -\frac{1}{L^4} \sum_{n=1}^{\infty} f_n \left(|\operatorname{tr} \Omega^n|^2 - 1 \right), \qquad (10)$$

with coefficients $f_n > 0$ which are exponentially small, $f_n \sim e^{-nm_{\rm g}L}$, when $m_{\rm g}L \gg 1$. At large μ , $V_{\rm g}(\Omega)$ is highly suppressed compared to the $\mu = 0$ result (8).

FIG. 3. (Color online.) Contour plots of $V_{\rm f}$ for $N = n_{\rm f} = 3$, with BCs (4a), as a function of θ_1, θ_2 for two nearby values of μL with $T/\mu = 10^{-3}$, illustrating the quantum oscillations described in the text. Darker colors indicate lower values of $L^4 V_{\rm eff}$. Regions outside the triangle shown are gauge-equivalent to points within the triangle. The centersymmetric point $(\theta_1, \theta_2, \theta_3) = (0, 2\pi/3, 4\pi/3)$ lies at the center of the triangle while the corners are the coinciding eigenvalue points (0, 0, 0) and $\pm (2\pi/3, 2\pi/3, 2\pi/3)$. Dots denote critical points of $\hat{V}_{\rm f}$. Results with BCs (4b) are similar.

Fermion excitations near the Fermi surface are nearly gapless as $T \to 0$, up to non-perturbative corrections from quark pairing. In the cold dense limit, $V_{\text{eff}}(\Omega)$ is dominated by the fermion contribution,

$$V_{\rm f}(\Omega) = \frac{1}{\pi\beta L^3 n_{\rm f}^2} \sum_{n=1}^{\infty} \frac{(\pm 1)^n}{n^3} \left[(\operatorname{tr} \Omega^{n_{\rm f}n} + \operatorname{h.c.}) \right] \times \sum_{k \in \mathbb{Z} + \frac{1}{2}} (1 + n_{\rm f} n \mathfrak{m}_k L) e^{-n_{\rm f} n \mathfrak{m}_k L} , \quad (11)$$

where $\mathfrak{m}_k^2 \equiv (2\pi kT + i\mu)^2 + m_q^2$, the upper/lower sign refers to BCs (4a)/(4b), and (11) is manifestly invariant under the CFC symmetry, as required. (Derivation detailed in Supplemental Materials[34].) To examine the realization of CFC symmetry, we work in the simplifying limit $m_q \ll \mu$ and focus on the regime $\mu L \gg 1$. If $TL \gg 1$, then the sum (11) is dominated by the $k = \pm \frac{1}{2}$, n = 1 terms, giving

$$V_{\rm f}(\Omega) = \frac{\pm 2T \, e^{-n_{\rm f} \pi L T}}{n_{\rm f} \pi L^2} \left[\mu \sin(n_{\rm f} \mu L) + \pi T \cos(n_{\rm f} \mu L) \right]$$

× (tr $\Omega^{n_{\rm f}}$ +h.c.) + (holonomy-independent), (12)

up to exponentially small corrections. The $e^{-\pi T L n_{\rm f}}$ factor arises from the lowest fermionic Matsubara frequency and our twisted boundary conditions. Alternatively, if $TL \rightarrow 0$ then the prefactor in (12) becomes $\pm (n_{\rm f}^2 \pi^2 L^3)^{-1}$. In either regime of TL, neglecting subdominant contributions, $V_{\rm eff}(\Omega) \propto \operatorname{Retr} \Omega^{n_{\rm f}}$ with an amplitude which oscillates as a function of $n_{\rm f} \mu L$.

For $n_{\rm f} = N = 3$, extrema of $V_{\rm f}(\Omega)$ fall into four categories: (a) one center-symmetric extremum at Ω = diag $(1, e^{2\pi i/3}, e^{4\pi i/3})$, where the SU(3) gauge symmetry is "broken" down to $U(1)^2$ with the holonomy playing the role of an adjoint Higgs field; (b) three center-broken extrema with "residual" gauge group $U(1)^2$ where $\Omega = \text{diag} (e^{(2k-1)i\pi/3}, e^{2ki\pi/3}, e^{(2k+1)i\pi/3}), \ k = 0, 1, 2;$ (c) nine center-broken " $SU(2) \times U(1)$ " extrema at $\Omega = \text{diag} (e^{ki\pi/9}, e^{ki\pi/9}, e^{-2ki\pi/9})$ with $k \mod 6 = 2, 3$ or 4; (d) three center-broken "SU(3)" extrema, $\Omega = \text{diag} (e^{2ki\pi/3}, e^{2ki\pi/3}, e^{2ki\pi/3}), \ k = 0, 1, 2$. These "SU(3)" extrema are also minima of $V_{\rm g}$.

The form (12) implies that the the locations of the minima of $V_{\text{eff}}(\Omega)$ change as a function of μL , as illustrated in the contour plots in Fig. 3 for two nearby values of μL . There are quantum oscillations in the phase structure of cold dense QCD on a circle, with the minima of V_{eff} cycling through two inequivalent sets of local minima as μL varies. These come in two groups within which $V_{\text{f}}(\Omega)$ is degenerate. One group consists of the center-symmetric and three SU(3) extrema. The other consists of the six $SU(2) \times U(1)$ extrema with $\Omega = \text{diag} \left(e^{ki\pi/9}, e^{ki\pi/9}, e^{-2ki\pi/9} \right)$ and $k \mod 6 = 2$ or 4. (The remaining six extrema are always saddle points for $TL \gg 1$.)

At T = 0 there are quantum phase transitions when the minimum energy state switches from one set of extrema to another, with associated jumps in the ground state degeneracy. (Similar behavior in other circle-compactified theories has been seen in Refs. [35, 36].) There are an infinite number of phase transitions in the cold dense limit as L increases and successive energy bands pass through the value of the chemical potential, with an accumulation point at $L = \infty$. Borrowing a term from the condensedmatter literature [37, 38], each point in the (T, μ) phase diagram for QCD where this phenomenon occurs can be called a multi-phase point [39]. As we discuss below, this behavior is expected in a finite area domain of the (T, μ) phase diagram, so in fact we find a *multi-phase region*.

The small residual gluon contribution to V_{eff} favors configurations with clumped holonomy eigenvalues, lowering the energy of SU(3) extrema relative to the centersymmetric point. Hence, we expect that all genuine minima of V_{eff} in this multi-phase region are associated with broken CFC symmetry, with $\langle \operatorname{tr} \Omega \rangle \neq 0$ [40].

Putting everything together, we conclude that there must be some curve $T = T_{\rm CFC}(\mu)$ below which the CFC symmetry is spontaneously broken with oscillatory multiphase behavior. We lack a definitive calculation of $V_{\rm g}(\Omega)$ valid for $T > T_{\rm CFL}$. But when $T_{\rm CFL} \leq T \ll g\mu$ we expect that $V_{\rm g}$ will grow in size and continue to favor CFC breaking. The non-perturbative physics which favors CFC restoration is only expected to set in once $T \gtrsim g\mu$. Hence we expect that $T_{\rm CFC}(\mu)$ is $\mathcal{O}(g\mu)$, greatly exceeding $T_{\rm CFL}$ at large μ . The $T_{\rm CFC}$ curve must end at some point μ_c on the T = 0 axis. The simplest hypothesis is that μ_c coincides with $\mu_n \sim \Lambda$, the critical chemical potential needed to produce pressureless nuclear matter **Conclusions.** We have shown that there are welldefined and non-trivial order parameters for quantum and thermal phase transitions in QCD, compactified on a circle, provided gcd $(n_f, N) > 1$ with quarks having a common mass m_q . This is a consequence of the existence of color-flavor center symmetry, and has interesting implications for the phase structure of QCD as a function n_f/N , μ , T, and m_q .

Note added: Ref. [41] appeared on the arXiv the day after our preprint, and has some overlap with parts of our construction.

Acknowledgments. We are grateful to D. B. Kaplan, L. McLerran, S. Reddy, A. Roggero, M. Savage, and T. Schäfer for stimulating discussions. This work was supported, in part, by the U. S. Department of Energy via grants DE-FG02-00ER-41132 (A.C.), DE-FG02-04ER41338 (S.S.), DE-SC0013036 (M.Ü.), DE-FG02-00ER41132 (M.W.) and DE-SC0011637 (L.Y.). L. Yaffe thanks the University of Regensburg and the Alexander von Humboldt foundation and S. Sen thanks Los Alamos National Laboratory for their generous support and hospitality during completion of this work.

- * aleksey.cherman.physics@gmail.com
- [†] srimoyee08@gmail.com
- [‡] munsal@ncsu.edu
- [§] mlwagman@uw.edu
- [¶] yaffe@phys.washington.edu
- [1] C. Vafa and E. Witten, Nucl. Phys. B234, 173 (1984).
- [2] H. Kouno, Y. Sakai, T. Makiyama, K. Tokunaga, T. Sasaki, and M. Yahiro, J. Phys. G39, 085010 (2012).
- [3] Y. Sakai, H. Kouno, T. Sasaki, and M. Yahiro, Phys. Lett. B718, 130 (2012), arXiv:1204.0228 [hep-ph].
- [4] H. Kouno, T. Makiyama, T. Sasaki, Y. Sakai, and M. Yahiro, J. Phys. G40, 095003 (2013), arXiv:1301.4013 [hep-ph].
- [5] H. Kouno, T. Misumi, K. Kashiwa, T. Makiyama, T. Sasaki, and M. Yahiro, Phys. Rev. **D88**, 016002 (2013), arXiv:1304.3274 [hep-ph].
- [6] T. Iritani, E. Itou, and T. Misumi, JHEP 11, 159 (2015), arXiv:1508.07132 [hep-lat].
- [7] H. Kouno, K. Kashiwa, J. Takahashi, T. Misumi, and M. Yahiro, Phys. Rev. **D93**, 056009 (2016), arXiv:1504.07585 [hep-ph].
- [8] T. Hirakida, H. Kouno, J. Takahashi, and M. Yahiro, Phys. Rev. **D94**, 014011 (2016), arXiv:1604.02977 [heplat].
- [9] T. Hirakida, J. Sugano, H. Kouno, J. Takahashi, and M. Yahiro, (2017), arXiv:1705.00665 [hep-lat].
- [10] R. A. Briceno, Z. Davoudi, T. C. Luu, and M. J. Savage, Phys. Rev. **D89**, 074509 (2014), arXiv:1311.7686 [heplat].
- [11] A. Cherman, T. Schäfer, and M. Ünsal, Phys. Rev. Lett. 117, 081601 (2016), arXiv:1604.06108 [hep-th].
- [12] Y. Liu, E. Shuryak, and I. Zahed, Phys. Rev. D94, 105013 (2016), arXiv:1606.02996 [hep-ph].

- [13] A. Cherman, S. Sen, M. L. Wagman, and L. G. Yaffe, Phys. Rev. **D95**, 074512 (2017), arXiv:1612.00403 [heplat].
- [14] N. Weiss, Phys. Rev. **D24**, 475 (1981).
- [15] Y. Aoki *et al.* (LatKMI), Phys. Rev. **D89**, 111502 (2014), arXiv:1403.5000 [hep-lat].
- [16] E. Rinaldi (LSD), in Sakata Memorial KMI Workshop on Origin of Mass and Strong Coupling Gauge Theories (SCGT15) Nagoya, Japan, March 3-6, 2015 (2015) arXiv:1510.06771 [hep-lat].
- [17] T. Appelquist *et al.*, Phys. Rev. **D93**, 114514 (2016), arXiv:1601.04027 [hep-lat].
- [18] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroeder, Phys. Lett. B681, 353 (2009), arXiv:0907.4562 [hep-lat].
- [19] Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K.i. Nagai, H. Ohki, A. Shibata, K. Yamawaki, and T. Yamazaki (LatKMI), Phys. Rev. D87, 094511 (2013), arXiv:1302.6859 [hep-lat].
- [20] T. Appelquist *et al.* (LSD), Phys. Rev. **D90**, 114502 (2014), arXiv:1405.4752 [hep-lat].
- [21] T. Appelquist et al., (2012), arXiv:1204.6000 [hep-ph].
- [22] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder, K. Holland, J. Kuti, D. Nogradi, and C. Schroeder, Phys. Lett. B703, 348 (2011), arXiv:1104.3124 [hep-lat].
- [23] Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K.-i. Nagai, H. Ohki, A. Shibata, K. Yamawaki, and T. Yamazaki, Phys. Rev. D86, 054506 (2012), arXiv:1207.3060 [hep-lat].
- [24] Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K.-i. Nagai, H. Ohki, E. Rinaldi, A. Shibata, K. Yamawaki, and T. Yamazaki (LatKMI), Phys. Rev. Lett. **111**, 162001 (2013), arXiv:1305.6006 [hep-lat].
- [25] W. E. Caswell, Phys. Rev. Lett. **33**, 244 (1974).
- [26] T. Banks and A. Zaks, Nucl. Phys. B196, 189 (1982).
- [27] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod. Phys. 53, 43 (1981).
- [28] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998), arXiv:hep-th/9802150 [hep-th].
- [29] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, and M. Van Raamsdonk, *Lie theory and its applications in physics. Proceedings, 5th International Workshop, Varna, Bulgaria, June 16-22, 2003, Adv. Theor. Math.* Phys. 8, 603 (2004), [,161(2003)], arXiv:hep-th/0310285 [hep-th].
- [30] T. Schäfer and F. Wilczek, Phys. Rev. Lett. 82, 3956 (1999), arXiv:hep-ph/9811473 [hep-ph].
- [31] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer, Rev. Mod. Phys. 80, 1455 (2008), arXiv:0709.4635 [hepph].
- [32] D. T. Son and M. A. Stephanov, Phys. Rev. D61, 074012 (2000), arXiv:hep-ph/9910491 [hep-ph].
- [33] D. H. Rischke, Phys. Rev. D62, 054017 (2000), arXiv:nucl-th/0003063 [nucl-th].
- [34] The supplemental materials include Refs. [42, 43].
- [35] A. S. Vshivtsev, M. A. Vdovichenko, and K. G. Klimenko, J. Exp. Theor. Phys. 87, 229 (1998), [Zh. Eksp. Teor. Fiz.114,418(1998)].
- [36] T. Kanazawa, M. Ünsal, and N. Yamamoto, (2017), arXiv:1703.06411 [hep-th].
- [37] M. E. Fisher and W. Selke, Phys. Rev. Lett. 44, 1502 (1980).
- [38] M. E. Fisher and W. Selke, Philosophical Transactions of

the Royal Society of London A: Mathematical, Physical and Engineering Sciences $\mathbf{302}$, 1 (1981).

- [39] Unlike the spin models discussed in Refs. [37, 38], our multi-phase points involve no fine-tuning, as they are obtained as limits of one of our two symmetry-preserving choices of compactification.
- [40] Higher order calculations of $V_{\rm f}$ are needed to confirm that the center-broken SU(3) minima are favored, as an $\mathcal{O}(g^2)$ two-loop fermion contribution could overwhelm the oneloop gluonic contribution when it is suppressed by Meiss-

ner screening.

- [41] H. Shimizu and K. Yonekura, (2017), arXiv:1706.06104 [hep-th].
- [42] A. Gonzalez-Arroyo, R. Narayanan, and H. Neuberger, Phys. Lett. B631, 133 (2005), arXiv:hep-lat/0509074 [hep-lat].
- [43] P. Kovtun, M. Unsal, and L. G. Yaffe, JHEP 06, 019 (2007), arXiv:hep-th/0702021 [HEP-TH].