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Aleksey Cherman,1, ∗ Srimoyee Sen,2, † Mithat Ünsal,3, ‡ Michael L. Wagman,1, 4, § and Laurence G. Yaffe4, ¶

1Institute for Nuclear Theory, University of Washington, Seattle, WA 98105 USA
2Department of Physics, University of Arizona, Tucson, AZ 85721 USA

3Department of Physics, North Carolina State University, Raleigh, NC 27695 USA
4Department of Physics, University of Washington, Seattle, WA 98105 USA

Common lore suggests that N -color QCD with massive quarks has no useful order parameters
which can be non-trivial at zero baryon density. However, such order parameters do exist when
there are nf quark flavors with a common mass and d ≡ gcd(nf , N) > 1. These theories have a Zd
color-flavor center symmetry arising from intertwined color center transformations and cyclic flavor
permutations. The symmetry realization depends on the temperature, baryon chemical potential
and value of nf/N , with implications for conformal window studies and dense quark matter.

Introduction. Gauge theories are ubiquitous in many
areas of physics. But defining order parameters in gauge
theories is notoriously subtle. For example, in pure
SU(N) Yang-Mills (YM) theory, the simplest non-trivial
order parameter is the expectation value of a line opera-
tor:

〈tr Ω〉 = 〈tr P ei
∫ L
0
dx1A1〉 , (1)

when the x1 dimension is compactified with circumfer-
ence L. If x1 is regarded as Euclidean time, then the
gauge theory functional integral with periodic boundary
conditions calculates the thermal partition function with
temperature T = 1/L. The thermal expectation value
(1) is the Polyakov loop confinement order parameter for
the ZN center symmetry of pure YM, whose realization
changes with temperature.

Adding fundamental representation quarks {qa}, a =
1, 2, · · ·, nf turns YM theory into QCD, the theory of
strong interactions. But the quarks explicitly break the
ZN center symmetry. The Polyakov loop ceases to be
an order parameter. With massless quarks, the flavor
symmetry is G = SU(nf)V × SU(nf)A × U(1)Q and the
chiral condensate 〈

∑
a q̄aqa〉 is an order parameter for the

SU(nf)A chiral symmetry, whose realization depends on
temperature. But if the quarks are massive, as in real-
world QCD, then chiral symmetry is explicitly broken
and 〈q̄aqa〉 ceases to be an order parameter. The re-
maining vector-like U(nf) symmetry cannot break spon-
taneously at vanishing baryon number density [1], leading
to the common understanding that QCD with dynamical
massive quarks lacks non-trivial order parameters at zero
baryon density.

However, QCD with massive quarks can possess sym-
metries which intertwine center and flavor transforma-
tions. Our discussion generalizes earlier work [2–9], show-
ing that special boundary conditions (BCs) for quarks
can lead to an unbroken Z3 symmetry. These works inter-
preted this choice as defining a “QCD-like” theory that
they termed “Z3-QCD”. (See also Refs. [10–13].) Here,
we generalize and reinterpret these BCs and use them to
define order parameters for both quantum and thermal
phase transitions in QCD.

Color-flavor center symmetry. Center symmetry
[14] acts only on topologically non-trivial observables. It
can be viewed as a topologically non-trivial gauge trans-
formation, with the action

〈tr Ω〉 → ω 〈tr Ω〉 , ω ≡ e2πi/N . (2)

By itself, this is not a symmetry when fundamental rep-
resentation fields are present in the theory.

We assume nf quark flavors have a common mass mq,
so the theory (on R4) has a U(nf)V flavor symmetry. We
consider flavor-twisted quark boundary conditions,

qa(x1+L) = Uab qb(x1) , (3)

where U is a U(nf) matrix, and regard x1 as a spatial
direction. The flavor twist U may be assumed diagonal
without loss of generality. The SU(nf)V flavor subgroup
has center Znf

, which motivates a Znf
symmetric choice

of BCs [2–9] for which the set of eigenvalues of U is in-
variant under multiplication by elements of Znf

. If the
theory is to retain charge conjugation and x1-reflection
symmetries (suitably redefined), then the set of eigenval-
ues must also be invariant under complex conjugation.
Two possibilities result, namely nf ’th roots of +1 or −1,

U = diag(1, ν, · · · , νnf−1), ν ≡ e2πi/nf , (4a)

or

U = diag(ν1/2, ν3/2, · · · , νnf−1/2) . (4b)

With the BCs in (4), the finite L flavor symmetry is
reduced to GL = U(1)nf−1

V × U(1)nf−1
A × U(1)Q ⊂ G.

The key observation is that if

d ≡ gcd(nf , N) > 1 , (5)

then the circle-compactified theory, with either bound-
ary condition (4), also remains invariant under an inter-
twined Zd ⊂ ZN × Zperm

nf
color-flavor center (CFC) sym-

metry, generated by the combination of a center transfor-
mation with phase ωN/d = e2πi/d and a Zd cyclic flavor
permutation. To see this note that, for either choice (4), a
Zd center transformation effectively permutes the eigen-
values of U . Combining the center transformation with
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the opposite cyclic flavor permutation (part of U(nf)V )
leaves the boundary condition invariant.

CFC symmetry intertwines center and flavor transfor-
mations and so has both local and extended order pa-
rameters. CFC order parameters include Polyakov loops
such as (1) with winding numbers which are non-zero
mod d, as well as Znf

Fourier transforms of fermion bi-

linears, O(p)
Γ ≡

∑nf

a=1 ν
−ap q̄aΓqa, where Γ is an arbitrary

Dirac matrix and p mod d 6= 0. The action of the Zd CFC
symmetry is

tr Ωp → ωNp/d tr Ωp , O(p)
Γ → νnfp/d O(p)

Γ . (6)

We note, however, that O(p) also transforms non-trivially
under pure flavor permutation transformations, while
tr Ωp only transforms non-trivially under the combined
CFC color-flavor transformations. In this sense, tr Ωp is
the natural order parameter for CFC symmetry.

Center symmetry and confinement. Consider the
Polyakov loop connected correlator in QCD compactified
on x1 with circumference L,

〈tr Ω(~x) tr Ω†(0)〉conn ≡ e−F (r) , r = |~x| . (7)

Suppose that F (r) ∼ E r as r → ∞. When nf = 0, the
theory has a ZN center symmetry. If the ground state is
ZN invariant, then no intermediate state created by a lo-
cal operator acting on the vacuum can contribute to the
correlator. All contributions to the correlator (7) must
involve flux tubes which wrap the compactified dimen-
sion, so that E = Lσ with σ the string tension.

On the other hand, if center symmetry is broken, ex-
plicitly or spontaneously, then intermediate states cre-
ated by local operators can also contribute to the corre-
lator (7). The minimal energy E need not grow with L.
This is interpreted as a signal of string breaking. It is
tempting to conclude that there is a tight link between
unbroken center symmetry and confinement of static test
quarks by unbreakable flux tubes.

Now suppose that d = gcd(nf , N) > 1, all quarks have
a common mass mq, and we engineer the existence of Zd
CFC symmetry by using the BCs (4). As seen above,
CFC symmetry acts on both Polyakov loops and appro-
priate local operators. Intermediate states created by
local operators transforming the same as tr Ω under all
unbroken symmetries can contribute to the correlator (7).
For example, states created by A ≡

∑nf

a=1 ν
−ap q̄aγ1D1qa

and B ≡
∑nf

a=1 ν
−ap q̄aγ1qa can contribute to correlators

of Re tr Ωp and Im tr Ωp, respectively, even when CFC
symmetry is not spontaneously broken. Consequently,
the string tension as defined by the asymptotic behavior
of the correlator (7) vanishes regardless of the realization
of the Zd center symmetry.

Conformal window. Let x ≡ nf/N , and set to zero
the common quark mass and temperature, mq = T = 0.
If x > 11

2 , QCD becomes an infrared-free theory. For
x below some xχ < 11

2 , chiral symmetry is believed to
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FIG. 1. Possible phase structures of massless QCD as a func-
tion of x = nf/N . The chiral and CFC symmetry realizations
change at some x = xχ and x = xCFC, respectively.

be spontaneously broken. In the intermediate range of
values x ∈ (xχ,

11
2 ), called the conformal window, QCD

flows to a non-trivial infrared (IR) fixed point without
chiral symmetry breaking. The value of xχ has been
the subject of intensive lattice investigations (see, e.g.,
Refs. [15–24]). The existence of an IR-conformal phase
can be seen most easily in the Veneziano large N limit of
QCD, where x is fixed along with the ’t Hooft coupling
λ ≡ g2N as N increases. If ε ≡ 11

2 − x → 0+, perturba-
tion theory self-consistently implies the existence of an IR
fixed point with a parametrically small coupling [25, 26],
λIR = 64

75π
2ε� 1.

One may show that Zd CFC symmetry is sponta-
neously broken in the conformal window, at least at large
N . The Veneziano limit is taken through a sequence of
values for which d = gcd(nf , N) is fixed and greater than
1, while the ratio x = nf/N approaches a non-zero limit.
Hence, the Polyakov loop (1) remains an order param-
eter for the intertwined Zd center symmetry. The CFC
realization may be determined by computing the quan-
tum effective potential Veff(Ω). Here the loop expansion
is controlled by the small value of λ at all scales when
ε � 1. The following small-ε analysis is thus valid for
any circumference L.

Classically, Veff(Ω) is zero. Using standard methods
[14, 27], at one loop one finds Veff(Ω) = Vg(Ω) + Vf(Ω)
with gluon and fermion contributions given by

Vg(Ω) = − 2

π2L4

∞∑
n=1

1

n4

(
|tr Ωn|2 − 1

)
, (8)

and

Vf(Ω) =
2

π2L4

∞∑
n=1

1

n4

(
trU−n tr Ωn + trUn tr Ω−n

)
=

2

π2L4nf
3

∞∑
n=1

(±1)n

n4
(tr Ωnfn + h.c.) . (9)

The upper/lower sign refers to BCs (4a)/(4b). As re-
quired, Veff is invariant under CFC symmetry. To deter-
mine the minima of Veff note that Vg = O(N2) while, due
to our imposition of flavor-twisted BCs, Vf = O(N−2).
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At large N , the minima of Veff are entirely determined
by the gluonic contribution Vg, which favors coinciding
eigenvalues, Ω ∝ 1. Consequently, when ε = 11

2 −x � 1
the CFC symmetry is spontaneously broken at any L.
On the other hand, at the pure Yang-Mill point, x = 0,
center symmetry is certainly expected to be unbroken at
large L, and standard large N counting arguments imply
that the intertwined center symmetry should remain un-
broken for sufficiently small x. Hence, there must be at
least one transition at some x = xCFC where the realiza-
tion of the CFC symmetry changes. Logically possible
phase diagrams are sketched in Fig. 1.

Turning on mq > 0 or T > 0 gives a richer phase struc-
ture. With ε � 1 and small mq, the theory develops a

new strong scale, Λm ∼ mq e
−75/(8ε2). When L becomes

comparable to Λ−1
m we expect a Zd center-restoring phase

transition. We also expect a CFC-restoring phase transi-
tion at a non-zero temperature T∗ ∼ 1/L when mq = 0,
similar to the large N deconfinement transition in N = 4
super-Yang-Mills theory on S3 × S1 [28, 29].

Now consider N = 3 and massless quarks. If the nf =
15 IR fixed point is weakly coupled, as widely believed,
then our above calculation applies and Z3 center symme-
try is spontaneously broken at nf = 15. At nf = 3, lattice
calculations [6] with boundary conditions (4a) are consis-
tent with unbroken Z3 center symmetry when LΛ � 1.
So for integer values of x = nf/3, there must be a min-
imal value 2 ≤ xCFC ≤ 5 where the Z3 CFC symmetry
first becomes spontaneously broken.

Dense quark matter. Consider the phase diagram
of QCD with N = nf = 3 and a common quark mass mq,
as a function of the U(1)Q chemical potential µ and tem-
perature T . Previously known symmetry principles only
suggest the existence of a curve T (µ) in the (T, µ) plane
below which lies a superfluid phase with spontaneously
broken U(1)Q symmetry, leading to a hypothesis of conti-
nuity of quark matter and hadronic nuclear matter [30].
Consideration of CFC symmetry implies the existence
of additional phase structure when QCD is compactified
with CFC-preserving BCs on a spatial circle large com-
pared to other spatial scales.

First, consider the small T , small µ regime. Here lat-
tice studies [6] imply that 〈tr Ω〉 = 0 at large L. At high
temperatures, T � max(Λ, µ), 〈tr Ω〉 also vanishes, be-
cause the dynamics on spatial scales large compared to
(g2T )−1 are described by pure 3D YM theory [27], which
confines. We expect this high-temperature region to be
smoothly connected to the region near T = µ = 0. How-
ever, as we next discuss the CFC symmetry realization
behaves non-trivially when T → 0 with µ� max(Λ,m).
A simple phase diagram consistent with our results is
sketched in Fig. 2.

High density QCD, µ � Λ, is believed to be in a
“color-flavor-locked” (CFL) color-superconducting phase
[31] when T < TCFL. The phase transition tempera-
ture TCFL is comparable to the superconducting gap,

T

μ0
μn ~ Λ

FIG. 2. (Color online.) Sketch of a possible phase diagram of
circle-compactified SU(3)V symmetric QCD at mq > 0, as a
function of T and µ, in the large L limit.

TCFL ∼ ∆ ∼ µ g−5e−(3π2/
√

2)/g. Electric and mag-
netic gluons develop Debye and Meissner static screen-
ing masses, respectively, both of order gµ in the CFL
phase [32, 33]. For TCFL < T . gµ, low frequency mag-
netic fluctuations experience Landau damping. Conse-
quently, for T . gµ the relevant gauge coupling is small,
g(µ)� 1, and cold dense quark matter is weakly coupled.

In typical gauge-dependent language, CFL supercon-
ductivity is driven by an expectation value for diquark
operators, 〈qai Cγ5q

b
j〉 ∝ εabKεijK [31]. The uncontracted

flavor indices on the “condensate” might lead one to think
that flavor permutation symmetry is broken, automat-
ically implying accompanying spontaneous breaking of
the CFC symmetry [7] when x1 is compactified with BCs
(4). But this gauge-dependent language is misleading.
The true gauge-invariant order parameters for sponta-
neous breaking of chiral and U(1)Q symmetries, schemat-
ically 〈q̄Cγ5q̄qCγ5q〉 and 〈(qCγ5q)

3〉, are SU(nf)V sin-
glets [31]. So the development of CFL superconductivity
does not, ipso facto, imply spontaneous breaking of CFC
symmetry in the circle compactified theory.

To study the CFC symmetry realization when µ � Λ
and T � gµ, we examine the one-loop effective potential
for Ω, which is the sum of gluonic and fermionic contri-
butions, Veff(Ω) = Vg(Ω) + Vf(Ω). The loop expansion is
controlled by g(µ) � 1 and is applicable for all L. For
T < TCFL, gluons have effective masses mg ∼ gµ due
to a combination of Debye screening and the Meissner
effect from color superconductivity [32, 33]. As with any
one-loop holonomy effective potential contribution from
massive adjoint bosons, we thus expect

Vg(Ω) = − 1

L4

∞∑
n=1

fn (|tr Ωn|2 − 1) , (10)

with coefficients fn > 0 which are exponentially small,
fn ∼ e−nmgL, when mgL � 1. At large µ, Vg(Ω) is
highly suppressed compared to the µ = 0 result (8).
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FIG. 3. (Color online.) Contour plots of Vf for N = nf = 3,
with BCs (4a), as a function of θ1, θ2 for two nearby val-
ues of µL with T/µ = 10−3, illustrating the quantum oscil-
lations described in the text. Darker colors indicate lower
values of L4Veff . Regions outside the triangle shown are
gauge-equivalent to points within the triangle. The center-
symmetric point (θ1, θ2, θ3) = (0, 2π/3, 4π/3) lies at the cen-
ter of the triangle while the corners are the coinciding eigen-
value points (0, 0, 0) and ±(2π/3, 2π/3, 2π/3). Dots denote

critical points of V̂f . Results with BCs (4b) are similar.

Fermion excitations near the Fermi surface are nearly
gapless as T → 0, up to non-perturbative corrections
from quark pairing. In the cold dense limit, Veff(Ω) is
dominated by the fermion contribution,

Vf(Ω) =
1

πβL3nf
2

∞∑
n=1

(±1)n

n3

[
(tr Ωnfn + h.c.)

×
∑

k∈Z+ 1
2

(1 + nfnmkL) e−nfnmkL
]
, (11)

where m2
k ≡ (2πkT + iµ)2 + m2

q, the upper/lower sign
refers to BCs (4a)/(4b), and (11) is manifestly invariant
under the CFC symmetry, as required. (Derivation de-
tailed in Supplemental Materials[34].) To examine the
realization of CFC symmetry, we work in the simplify-
ing limit mq � µ and focus on the regime µL � 1. If
TL� 1, then the sum (11) is dominated by the k = ± 1

2 ,
n = 1 terms, giving

Vf(Ω) =
±2T e−nfπLT

nfπL2
[µ sin(nfµL) + πT cos(nfµL)]

× (tr Ωnf +h.c.) + (holonomy-independent), (12)

up to exponentially small corrections. The e−πTLnf

factor arises from the lowest fermionic Matsubara fre-
quency and our twisted boundary conditions. Alterna-
tively, if TL → 0 then the prefactor in (12) becomes
±(nf

2π2L3)−1. In either regime of TL, neglecting sub-
dominant contributions, Veff(Ω) ∝ Re tr Ωnf with an am-
plitude which oscillates as a function of nfµL.

For nf =N = 3, extrema of Vf(Ω) fall into four cat-
egories: (a) one center-symmetric extremum at Ω =

diag (1, e2πi/3, e4πi/3), where the SU(3) gauge symme-
try is “broken” down to U(1)2 with the holonomy play-
ing the role of an adjoint Higgs field; (b) three center-
broken extrema with “residual” gauge group U(1)2 where
Ω = diag (e(2k−1)iπ/3, e2kiπ/3, e(2k+1)iπ/3), k = 0, 1, 2;
(c) nine center-broken “SU(2) × U(1)” extrema at Ω =
diag (ekiπ/9, ekiπ/9, e−2kiπ/9) with k mod 6 = 2, 3 or
4; (d) three center-broken “SU(3)” extrema, Ω =
diag (e2kiπ/3, e2kiπ/3, e2kiπ/3), k = 0, 1, 2. These “SU(3)”
extrema are also minima of Vg.

The form (12) implies that the the locations of the
minima of Veff(Ω) change as a function of µL, as illus-
trated in the contour plots in Fig. 3 for two nearby val-
ues of µL. There are quantum oscillations in the phase
structure of cold dense QCD on a circle, with the min-
ima of Veff cycling through two inequivalent sets of lo-
cal minima as µL varies. These come in two groups
within which Vf(Ω) is degenerate. One group consists
of the center-symmetric and three SU(3) extrema. The
other consists of the six SU(2) × U(1) extrema with
Ω = diag (ekiπ/9, ekiπ/9, e−2kiπ/9) and k mod 6 = 2 or
4. (The remaining six extrema are always saddle points
for TL� 1.)

At T = 0 there are quantum phase transitions when the
minimum energy state switches from one set of extrema
to another, with associated jumps in the ground state de-
generacy. (Similar behavior in other circle-compactified
theories has been seen in Refs. [35, 36].) There are an in-
finite number of phase transitions in the cold dense limit
as L increases and successive energy bands pass through
the value of the chemical potential, with an accumulation
point at L =∞. Borrowing a term from the condensed-
matter literature [37, 38], each point in the (T, µ) phase
diagram for QCD where this phenomenon occurs can be
called a multi-phase point [39]. As we discuss below, this
behavior is expected in a finite area domain of the (T, µ)
phase diagram, so in fact we find a multi-phase region.

The small residual gluon contribution to Veff favors
configurations with clumped holonomy eigenvalues, low-
ering the energy of SU(3) extrema relative to the center-
symmetric point. Hence, we expect that all genuine min-
ima of Veff in this multi-phase region are associated with
broken CFC symmetry, with 〈tr Ω〉 6= 0 [40].

Putting everything together, we conclude that there
must be some curve T = TCFC(µ) below which the CFC
symmetry is spontaneously broken with oscillatory multi-
phase behavior. We lack a definitive calculation of Vg(Ω)
valid for T > TCFL. But when TCFL . T � gµ we
expect that Vg will grow in size and continue to favor
CFC breaking. The non-perturbative physics which fa-
vors CFC restoration is only expected to set in once
T & gµ. Hence we expect that TCFC(µ) is O(gµ), greatly
exceeding TCFL at large µ. The TCFC curve must end at
some point µc on the T = 0 axis. The simplest hypothe-
sis is that µc coincides with µn ∼ Λ, the critical chemical
potential needed to produce pressureless nuclear matter
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at T = 0, as illustrated in Fig. 2.

Conclusions. We have shown that there are well-
defined and non-trivial order parameters for quantum
and thermal phase transitions in QCD, compactified on
a circle, provided gcd (nf , N) > 1 with quarks having a
common mass mq. This is a consequence of the existence
of color-flavor center symmetry, and has interesting im-
plications for the phase structure of QCD as a function
nf/N , µ, T , and mq.

Note added: Ref. [41] appeared on the arXiv the day
after our preprint, and has some overlap with parts of
our construction.
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[30] T. Schäfer and F. Wilczek, Phys. Rev. Lett. 82, 3956
(1999), arXiv:hep-ph/9811473 [hep-ph].

[31] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer,
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