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In quantum statistical mechanics, it is of fundamental interest to understand how close the entan-
glement entropy of eigenstates of quantum chaotic Hamiltonians is to maximal. For random pure
states in the Hilbert space, the average entanglement entropy is known to be nearly maximal, with
a deviation that is, at most, a constant. Here we prove that, in a system that is away from half
filling and divided in two equal halves, an upper bound for the average entanglement entropy of
random pure states with a fixed particle number and normally distributed real coefficients exhibits
a deviation from the maximal value that grows with the square root of the volume of the system.
Exact numerical results for highly excited eigenstates of a particle number conserving quantum
chaotic model indicate that the bound is saturated with increasing system size.

Introduction.– Entanglement in few-body quantum
systems is a topic that triggered special interest since the
birth of quantum mechanics [1, 2]. In recent years, in-
terest has shifted towards entanglement in systems with
many degrees of freedom, which, e.g., is relevant to cur-
rent problems in the fields of condensed matter, quan-
tum information, and quantum gravity [3]. In condensed
matter and quantum information, the concept of entan-
glement has played an essential role in designing efficient
numerical algorithms [4–6], in understanding quantum
phase transitions [7–9], and in characterizing the dynam-
ics after quantum quenches [10–12]. Also, studies with
ultracold atoms in optical lattices [13, 14] have begun the
experimental exploration of entanglement in and out of
equilibrium. An important aspect of these experimental
systems is that the size of the subsystem of interest is not
necessarily a vanishing fraction of the size of the entire
system, in contrast to traditional statistical mechanics.

Despite considerable theoretical efforts [15–28], rig-
orous understanding of the behavior of the bipartite
entanglement entropy in eigenstates of generic (quan-
tum chaotic) Hamiltonians (with ground states being
an exception [29–33]) is lacking. The expectation is
that typical eigenstates at high temperature are (nearly)
maximally entangled. This follows from the result by
Page [34], who proved that, for a bipartition of a system
into subsystem A and its complement B, the average en-
tanglement entropy of random pure states is

Save = lnDA −
1

2

D2
A

D
, (1)

where D and DA (DA ≤
√
D) are the Hilbert-space di-

mensions of the system and the subsystem A, respec-
tively. Page’s result suggests that if the ratio f (referred
to as the subsystem fraction) between the volume of sub-
system A and of the system is f < 1/2, then the de-
viation from the maximum entanglement entropy van-
ishes exponentially with the volume of the system, while
for f = 1/2 the deviation is 1/2. However, eigenstates
of physical Hamiltonians are measure zero in the space
of pure states so one might argue that the previous ex-
pectation is ill founded. Indeed, eigenstates of transla-

tionally invariant quadratic fermionic Hamiltonians have
been proved to violate Eq. (1) [35].

Here, we study the bipartite von Neumann entangle-
ment entropy (referred to as the entanglement entropy) of
pure states with a fixed particle number (towards the end,
we briefly explore what happens when this constraint is
lifted). We consider random pure states with normally
distributed real coefficients (referred to as random canon-
ical states), which are motivated by the Gaussian orthog-
onal ensemble of random matrix theory [36], and high-
energy eigenstates of a particle number conserving quan-
tum chaotic model of hard-core bosons. We show that
the average entanglement entropy of random canonical
states consists of two terms: (i) a “mean-field” term asso-
ciated with the maximum entanglement entropy, and (ii)
a fluctuation term arising from fluctuations of the matrix
elements of the reduced density matrix. In general, the
latter cannot be neglected in finite systems. In particu-
lar, in a system that is away from half filling and divided
in two equal halves, we prove that an upper bound to the
average entanglement entropy of random canonical states
exhibits a deviation from the maximal value that grows
with the square root of the subsystem volume. Numerical
results for those states, and for high-energy eigenstates
of the hard-core boson model, indicate that the bound is
saturated with increasing system size.

Quantum chaotic model.– We consider hard-core
bosons in one-dimensional lattices with nearest and next-
nearest hoppings (t1 and t2) and interactions (V1 and V2)

Ĥ = −t1
L∑
l=1

(b̂†l+1b̂l + H.c.)− t2
L∑
l=1

(b̂†l+2b̂l + H.c.)

+V1

L∑
l=1

n̂ln̂l+1 + V2

L∑
l=1

n̂ln̂l+2 , (2)

where n̂l = b̂†l b̂l, (b̂l)
2 = (b̂†l )

2 = 0, and L is the number
of lattice sites. In our calculations, we set t1 = t2 = 1
and V1 = V2 = 1.1. For these parameters, this model
has been shown [37, 38] to be quantum chaotic and ex-
hibit eigenstate thermalization [36, 39–41] for the system
sizes studied here. We use exact diagonalization, resolv-
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ing all symmetries, to compute the average entanglement
entropy S̄ of eigenstates in the center of the spectrum
(to reduce finite-size effects, we only consider 20% of all
eigenstates). For an eigenstate |Ψ〉, the entanglement en-
tropy is S = −Tr{ρ̂A ln(ρ̂A)}, where ρ̂A = TrB{|Ψ〉〈Ψ|}
is obtained from the spatial trace over the degrees of free-
dom in subsystem B.

Random canonical states.– We construct random
canonical states on a lattice with L sites and two states
per site as |ψN 〉 =

∑DN

j=1 zj |j〉/
√
DN , where zj is a nor-

mally distributed real random number with zero mean
and variance one, N is the particle number, DN =

(
L
N

)
is

the dimension of the Hilbert space, and |j〉 is a base ket
for N particles in the site-occupation basis. Note that,
in finite systems, |ψN 〉 is not exactly normalized. How-
ever, for the normalized state |ψN 〉/

√
N , the mean of the

normalization factor N is one, and its fluctuations vanish
exponentially fast with increasing L (see Ref. [42]). This
justifies the use of |ψN 〉 in the analytical calculations.

We consider a bipartition into subsystem A (with
LA < L consecutive lattice sites) and its complement
subsystem B (with L − LA lattice sites). One can ex-
press |ψN 〉 as a sum of direct products of base kets in
subsystems A and B,

|ψN 〉 =

Nmax
A∑

NA=Nmin
A

dNA∑
a=1

dB(NA)∑
b=1

za,b(NA)√
DN

|a,NA〉|b,N −NA〉 .

(3)
In the latter expression, the states in subsystem A can
be seen to belong to sectors with different particle num-
ber NA, where Nmin

A = Max[0, N − (L − LA)] and
Nmax
A = Min[N,LA]. The Hilbert-space dimension of

a sector with NA particles is dNA
=
(
LA

NA

)
. For every sec-

tor in subsystem A with NA particles, the corresponding
sector in subsystem B contains N−NA particles and has
a Hilbert-space dimension dB(NA) =

(
L−LA

N−NA

)
.

The reduced density matrix of subsystem A, ρ̂A =
TrB{|ψN 〉〈ψN |}, can be written as

ρ̂A =

Nmax
A∑

NA=Nmin
A

dNA∑
a,a′=1

|a,NA〉〈a′, NA|
F (a, a′, NA)

DN
, (4)

where ρ̂A is block diagonal with each block labeled by
NA, and

F (a, a′, NA) =

dB(NA)∑
b=1

za,b(NA)za′,b(NA) , (5)

which is a sum of products of random numbers, and
whose average is F (a, a′, NA) = dB(NA)δa,a′ . Hence, the
average reduced density matrix is

ˆ̄ρA =

Nmax
A∑

NA=Nmin
A

dNA∑
a=1

|a,NA〉〈a,NA| λ̄NA
, (6)
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FIG. 1. Average entanglement entropy in eigenstates of a
quantum chaotic Hamiltonian, Eq. (2), and in random canon-
ical states, Eq. (3). (Main panel) S̄/[L/2] vs the subsystem
fraction f = LA/L for n = 1/2, 1/3, 1/4 and 1/6 (L = 22,
24, 24, and 30, respectively). Solid (dashed) lines show the
mean-field entanglement entropy SMF (S∗MF) from Eq. (12)
[Eq. (13)]. (Inset) S̄ − SMF vs 1/LA for f = n = 1/2.

i.e., it is diagonal with diagonal matrix elements λ̄NA
=

dB(NA)/DN .
Entanglement entropy of random canonical states.– We

are interested in the average of the entanglement entropy
over random canonical states, S̄ = −Tr{ρ̂A ln(ρ̂A)}. To
compute it, we define the operator

M̂ = (ˆ̄ρA)−1(ρ̂A − ˆ̄ρA) , (7)

so that S of a single random state can be written as

S = −Tr
{

ˆ̄ρA(Î + M̂) ln
[

ˆ̄ρA(Î + M̂)
]}

. (8)

ˆ̄ρA and Î + M̂ commute for random canonical states as,
in the site-occupation basis, Î+M̂ is block diagonal with
matrix elements [I +M(NA)]a,a′ = F (a, a′, NA)/dB(NA).
Hence, the logarithm in Eq. (8) can be replaced by a
sum of logarithms, and the entanglement entropy can be
written as S = SMF + S0 + Sfluct, where

SMF = −Tr
{

ˆ̄ρA ln ˆ̄ρA
}
, (9)

S0 = −Tr
{

ˆ̄ρAM̂ ln ˆ̄ρA

}
, (10)

Sfluct = −Tr
{

ˆ̄ρA(Î + M̂) ln(Î + M̂)
}
. (11)

We call SMF in Eq. (9) the “mean-field” entangle-
ment entropy as the elements of the reduced density
matrix in Eq. (4) are replaced by their average [see
Eq. (6)]. As a result, S̄MF = SMF. The terms in
Eqs. (10)-(11) contain the contribution to the entan-
glement entropy due to fluctuations of the matrix ele-
ments of the reduced density matrix about their aver-
age. Since M(NA)a,a′ = 0, the average of S0 is zero,
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S̄0 = −
∑
NA

λ̄NA
ln λ̄NA

∑
aM(NA)a,a = 0. Hence, only

Sfluct is nontrivial. Since S̄fluct 6= 0 in general, it then
follows that Tr{ρ̂A ln(ρ̂A)} 6= Tr{ ˆ̄ρA ln(ˆ̄ρA)}.

Mean-field entanglement entropy.– We first review the
key properties of SMF in Eq. (9)

SMF = −
Nmax

A∑
NA=Nmin

A

dNA
λ̄NA

ln λ̄NA
. (12)

Using Stirling’s approximation for large systems, the two
leading-order terms of Eq. (12) can be written as [42]

S∗MF = −LA [n lnn+ (1− n) ln(1− n)] +
f + ln(1− f)

2
,

(13)
where n = N/L is the average site occupation and f =
LA/L is the subsystem fraction. The leading term in
Eq. (13) is identical to the one derived in Ref. [26]. Two
notable features of S∗MF are: (i) it is proportional, up to
nonextensive corrections, to the subsystem volume LA,
and (ii) the proportionality constant only depends on n.

Figure 1 (main panel) compares the average entangle-
ment entropy of the eigenstates in the center of the spec-
trum (20% of all eigenstates) of Hamiltonian (2), and the
average entanglement entropy of random canonical states
introduced in Eq. (3). The results are plotted vs the sub-
system fraction f for different values of n, and yield a
remarkable agreement. The solid and dashed (overlap-
ping) lines show the mean-field entanglement entropies
SMF and S∗MF from Eqs. (12) and (13), respectively. One
can see that SMF is close to S̄ for small f , but the two
depart as f → 1/2. The inset in Fig. 1 indicates that, as
LA → ∞ for f = 1/2 and n = 1/2, the deviation from
SMF is the one predicted by Page [Eq. (1)] upon replacing
lnDA with SMF (because of the fixed particle number),
i.e., S̄ = SMF − 1/2 for random canonical states and for
the Hamiltonian eigenstates. Surprisingly, for all other
average site occupations (n 6= 1/2) at f = 1/2, we find
that the deviation from SMF is not O(1). The main goal
of this Letter is to understand this deviation.

Fluctuation term.– Next, we focus on Sfluct in Eq. (11).
It is key to understand the distribution of the eigenvalues
Λj of the block-diagonal matrix I + M . Even though
the average of this matrix is the identity matrix, some
of its eigenvalues can strongly deviate from one. As we
show next, this occurs when the total number of particles
(or holes, if N > L/2) is smaller than the subsystem
volume, and follows from the fact that the eigenvalues
within each sector with particle number NA satisfy the
sum rule Tr{I +M(NA)} = dNA

.
Without loss of generality, we focus on site occupa-

tions n < 1/2 [if n > 1/2, one should focus on the
hole occupations nh = 1 − n, since S̄(n) = S̄(1 − n)].
Let us first consider the sector with NA = N . In that
case, one can write I + M(N) = ~z1(N)~z1(N)T , where
~zb(NA) := (z1,b, z2,b, ..., zdNA

,b)
T is a random vector.

Hence, I + M(N) has rank one and therefore contains
only one nonzero eigenvalue. In average, this nonzero
eigenvalue equals dN =

(
LA

N

)
.

Moving on to sectors with an arbitrary number of par-
ticles NA, one can write

I +M(NA) =
1

dB(NA)

dB(NA)∑
b=1

~zb(NA)~zb(NA)T . (14)

Since ~zb(NA) is a different random vector for every b,
the ranks of the outer-product matrices in Eq. (14) add
up and result in Min

[
dB(NA), dNA

]
eigenvalues that are

nonzero. Hence, there will be dNA
− dB(NA) zero eigen-

values in blocks with NA > N∗A particles, where N∗A is
the lowest NA for which dB(NA) < dNA

. This analysis
reveals that, in the regime N < LA, a large fraction of
the eigenvalues of I + M(NA) (for NA > N∗A) can be
zero. They do not contribute to the entanglement en-
tropy. As a result, the average of the nonzero eigenval-
ues Λ̄NA

= dNA
/dB(NA) can be very large and can, as we

show later, give rise to a contribution that grows with
the volume of the subsystem.

While the actual values of the nonzero eigenvalues
Λj are in general unknown, our analysis so far im-
plies that, when NA > N∗A, the average fluctuation
term of the entanglement entropy equals S̄fluct(NA) =

−λ̄NA

∑dB(NA)

j=1 Λj ln Λj . One can set an upper bound to

the fluctuation term, S̄fluct ≤ Sbound
fluct , by replacing Λj

with Λ̄NA
, which yields

Sbound
fluct = −

N∑
NA=N∗A

dNA
λ̄NA

ln Λ̄NA
. (15)

Note that, despite the similarity between Eq. (15) and
Eq. (12), Sbound

fluct ≤ 0 (Λ̄NA
> 1) while SMF ≥ 0. Note

that Sbound
fluct = 0 if LA < N .

Summarizing our results so far, we have derived an
analytic expression for the upper bound of the average
entanglement entropy of random canonical states with a
fixed particle number

S̄ ≤ SMF + Sbound
fluct , (16)

where SMF and Sbound
fluct are given by Eqs. (12) and (15),

respectively [43]. The key final step is to find how Sbound
fluct

scales with the subsystem size LA. Here, we focus on
f = 1/2 and derive a closed-form expression of the two
leading terms in the limit of large system sizes [42]

Sbound∗
fluct =−

√
LA ln

(
1− n
n

)√
n(1− n)

π

+
1√
LA

(1− 2n)

3
√
πn(1− n)

. (17)

Hence, for n < 1/2, SMF+Sbound
fluct is fundamentally differ-

ent from Eq. (1), which predicts an O(1) correction to the
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FIG. 2. Fluctuation contribution to the average entanglement entropy when f = 1/2, for average site occupations n = 1/3
(a), 1/4 (b), and 1/6 (c). The circles display results for random canonical states, Eq. (3) (see Ref. [42] for details on the
numerical calculations), and the dashed lines are linear fits to those results. The squares display the results for eigenstates of
Hamiltonian (2). The diamonds are the upper bound Sbound

fluct from Eq. (15) and the solid lines are Sbound∗
fluct from Eq. (17). The

zigzag structure of Sbound
fluct in (b) and (c) is a finite-size effect [42].

mean-field entanglement entropy SMF. (Note that, for
n = 1/2, Sbound∗

fluct = 0.) Moreover, SMF + Sbound
fluct is also

fundamentally different from the entropy in the canon-
ical ensemble at infinite temperature, SA = lnDN/2 ≈
−LA [n lnn+ (1− n) ln(1− n)] − (1/4) ln(LA) + Cn, for
which the largest correction to the mean-field entangle-
ment entropy is logarithmic in LA.

In Ref. [42], we provide numerical evidence that Sbound
fluct

still grows as
√
LA for subsystem sizes that satisfy

limL→∞(L/2 − LA)/
√
L = const. On the other hand, if

LA = fL with f < 1/2, Sbound
fluct decreases exponentially

fast with increasing LA.
Figure 2 shows the rescaled entanglement entropy (S̄−

SMF)/
√
LA when f = 1/2, for different average site occu-

pations n = 1/3, 1/4 and 1/6. We compare exact numer-
ical results for random canonical states, Eq. (3), and for
eigenstates of the Hamiltonian in Eq. (2), with the pre-
dictions from Sbound

fluct and Sbound∗
fluct in Eqs. (15) and (17),

respectively. In all cases, as expected, Sbound
fluct /

√
LA pro-

vides an upper bound. Remarkably, linear extrapola-
tions of the numerical results (shown only for the ran-
dom canonical states) appear to saturate the bound for
LA → ∞. This indicates that, in Eq. (16), the equality
in likely to hold in the thermodynamic limit.

Random states without a fixed particle number.– To
conclude, we provide numerical evidence that the main
results derived for states with a fixed particle number
remain valid for states without a fixed particle number.
We consider random states

|ψ′〉 =

D∑
m=1

zm√
Z
eµN̂/2|m〉 , (18)

where zm is a normally distributed real random number
with zero mean and variance one, |m〉 is a base ket in the
site-occupation basis, D = 2L, and Z = (1 + eµ)L. The
chemical potential µ = ln[n/(1−n)] sets the average site
occupation to n.
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FIG. 3. Entanglement entropy of random pure states when
f = 1/2, for average site occupations n = 1/3 (a) and n =
1/4 in (b). The circles display results for random canonical
states, Eq. (3). [Circles and dashed lines are identical to the
ones in Figs. 2(a) and 2(b).] The pentagons display results
for random states without a fixed particle number, Eq. (18),
where SMF → S′MF. Solid lines are linear fits in which the
slope is chosen to be identical to the one for the dashed lines
(see Ref. [42] for details on the numerical calculations).

Following the same procedure as for states with a fixed
particle number [see Eq. (3)], we obtain the analog of SMF

in Eq. (9) for the states in Eq. (18) (see Ref. [42])

S′MF = −LA [n lnn+ (1− n) ln(1− n)] , (19)

which is, for nonzero f , larger than SMF in Eq. (13). In
Fig. 3, we compare the rescaled average entanglement
entropy for both classes of random states. One can see
that, in both cases, the fluctuation contribution to the
entanglement entropy S̄fluct is consistent with a

√
LA de-

pendence as LA →∞. The values of S̄fluct are larger for
states without a fixed particle number, consistent with
the results obtained for the mean-field entropies.

Discussion.– Using random pure states with a fixed
particle number and normally distributed real coeffi-
cients, we studied the deviation of the average entangle-
ment entropy from the maximal value introduced by the
fluctuations of the matrix elements of the reduced den-
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sity matrix. For f = 1/2 and n 6= 1/2, we proved that
there is a lower bound to that deviation that grows as the
square root of the subsystem volume. Exact numerical
results for random canonical states and for highly excited
eigenstates of a quantum chaotic model indicate that the
bound is saturated as LA → ∞. We also presented nu-
merical evidence suggesting that qualitatively similar re-
sults hold in the absence of the fixed particle number
constraint, for which analytic results are not available.
Our results show that while the leading term for the
average entanglement entropy of high-energy eigenstates
of quantum-chaotic Hamiltonians is likely the maximal
entanglement entropy, the correction for f = 1/2 and
n 6= 1/2 must at least grow with the square root of the
volume of the subsystem (as opposed to be a constant,
as dictated by Page’s result). Our results highlight that,
away from half filling, high-energy eigenstates of quan-
tum chaotic Hamiltonians are not like typical pure states
in the Hilbert space. They also make apparent that large
deviations from the maximal entanglement entropy can
be observed in experiments and numerical calculations in
finite systems.
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