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We present a Monte Carlo method for computing the renormalized coupling constants and the
critical exponents within renormalization theory. The scheme, which derives from a variational
principle, overcomes critical slowing down, by means of a bias potential that renders the coarse
grained variables uncorrelated. The 2D Ising model is used to illustrate the method.

Since Wilson’s seminal contribution [1] to renormaliza-
tion group (RG) theory [2], there has been strong interest
in methods to compute the renormalized coupling con-
stants and the critical exponents in a non-perturbative
fashion. This goal has been achieved with the Monte
Carlo (MC) RG approach of Swendsen. In 1979, he intro-
duced a method to compute the critical exponents, which
did not require explicit knowledge of the renormalized
Hamiltonian [7]. A few years later, he solved the prob-
lem of calculating the renormalized coupling constants,
using an equality due to Callen [8] to write the correlation
functions in a form explicitly depending on the couplings.
By imposing that the standard MC expression of a cor-
relation function and its corresponding Callen form be
equal, he derived equations whose iterative solution led
to the coupling constants [9]. Finding the renormalized
Hamiltonian is an example of inverse statistical mechan-
ical problem [10]. MCRG has been used successfully in
many applications but difficulties related to sampling ef-
ficiency may be severe. Typically, the evaluation of the
correlation functions near a critical point suffers from
critical slowing down and is affected by large sampling
errors in large systems. This difficulty can be alleviated
with ingenious cluster algorithms [11], which, however,
are limited to specific models.
Here we present an MCRG framework based on a vari-

ational principle for a biasing potential acting on the
coarse grained degrees of freedom of a RG transforma-
tion. In our approach, the coupling constants and the
critical exponents derive from the same unifying princi-
ple. Swendsen’s formulae emerge as a special case, but
our scheme also leads to formulations exempt from crit-
ical slowing down. In addition, it permits to estimate
variationally the effect of truncating the Hamiltonian.
Although the approach is rather general, as we will

briefly discuss in the conclusion, here we limit ourselves,
for concreteness, to lattice models with discrete spin de-
grees of freedom, {σ}. A generic Hamiltonian has the
form

H(σ) =
∑

α

KαSα(σ), (1)

where the Kα are coupling constants and the Sα are op-
erators acting on the spins σ, such as sums or products

of spins or combinations thereof.
RG considers a flux in the space of Hamiltonians (1)

under scale transformations that reduce the linear size of
the original lattice by a factor b. The rescaled degrees
of freedom take the same discrete values of the origi-
nal spins, to which they are related by a coarse graining
transformation, σ′ = τ(σ), satisfying a semigroup prop-
erty [12]. For example, τ can be the block spin transfor-
mation of Kadanoff [13].
The distribution of the σ

′ is obtained from the dis-
tribution of the σ by tracing out the original degrees of
freedom while keeping the σ

′ fixed:

p(σ′) =

∑
σ
δ
τ(σ),σ′e−H(σ)

Z
=
e−H′(σ′)

Z ′
. (2)

Here δ is the discrete Kroneker-delta function, Z and
Z ′ are partition functions that ensure the normaliza-
tion of the corresponding distributions. While the parti-
tion function Z ′ is invariant under RG transformations,
the renormalized Hamiltonian H ′ is not, except at fixed
points of the RG flow:

Z =
∑

σ

e−H(σ) =
∑

σ
′

e−H′(σ′) = Z ′ (3)

and

H ′(σ′) = − log
∑

σ

δτ(σ),σ′e−H(σ) (4)

Repeated ad infinitum, the RG transformations generate
a flux in the space of Hamiltonians, in which all possible
coupling terms appear, unless forbidden by symmetry.
For example, in an Ising model with no magnetic field,
only even spin products appear. The space of the cou-
pling terms is, in general, infinite. However, perturbative
and non-perturbative calculations suggest that only a fi-
nite number of couplings should be sufficient for a given
degree of accuracy.
In the proximity of a critical point, the distribution

(2) of the block spins σ′ displays a divergent correlation
length, originating critical slowing down of local MC up-
dates. This can be avoided by modifying the distribution
of the σ

′ by adding to the Hamiltonian H ′(σ′) a biasing
potential V (σ′) to force the biased distribution of the
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block spins, pV (σ
′), to be equal to a chosen target distri-

bution, pt(σ
′). For instance, pt can be the constant prob-

ability distribution. Then the σ
′ have the same proba-

bility at each lattice site and act as uncorrelated spins,
even in the vicinity of a critical point.
It turns out that V (σ′) obeys a powerful variational

principle that facilitates the sampling of the Landau free
energy [14]. In the present context, we define the func-
tional Ω[V ] of the biasing potential V (σ′) by:

Ω[V ] = log

∑
σ

′ e
−[H′(σ′)+V (σ′)]

∑
σ

′ e−H′(σ′)
+
∑

σ
′

pt(σ
′)V (σ′), (5)

where pt(σ
′) is a normalized known target probability

distribution. As demonstrated in [14], the following prop-
erties hold:

1. Ω[V ] is a convex functional with a lower bound.

2. The minimizer, Vmin(σ
′), of Ω is unique up to a

constant and is such that:

H ′(σ′) = −Vmin(σ
′)− log pt(σ

′) + constant (6)

3. The probability distribution of the σ
′ under the

action of Vmin is:

pVmin
(σ′) =

e−(H′(σ′)+Vmin(σ
′))

∑∑∑
σ′ e−(H′(σ′)+Vmin(σ′))

= pt(σ
′) (7)

The above three properties lead to the following MCRG
scheme.
First, we approximate V (σ′) with VJ(σ

′), a linear com-
bination of a finite number of terms Sα(σ

′) with unknown
coefficients Jα, forming a vector J = {J1, ..., Jα, ..., Jn}.

VJ(σ
′) =

∑

α

JαSα(σ
′) (8)

Then the functional Ω[V ] becomes a convex function of
J, due to the linearity of the expansion, and the mini-
mizing vector, Jmin, and the corresponding Vmin(σ

′) can
be found with a local minimization algorithm using the
gradient and the Hessian of Ω:

∂Ω(J)

∂Jα
= −〈Sα(σ

′)〉VJ
+ 〈Sα(σ

′)〉pt
(9)

∂2Ω(J)

∂Jα∂Jβ
= 〈Sα(σ

′)Sβ(σ
′)〉VJ

− 〈Sα(σ
′)〉VJ

〈Sβ(σ
′)〉VJ

(10)
Here 〈·〉VJ

is the biased ensemble average under VJ
and 〈·〉pt

is the ensemble average under the tar-
get probability distribution pt. The first average is
associated to the Boltzmann factor exp{−(H ′(σ′) +
V (σ′))} =

∑
σ
δτ(σ),σ′ exp(−H(σ)) exp(−V (τ(σ))) and

can be computed with MC sampling. The second aver-
age can be computed analytically if pt is simple enough.
〈·〉VJ

always has inherent random noise, or even inaccu-
racy, and some sophistication is required in the optimiza-
tion problem. Following [14], we adopt the stochastic op-
timization procedure of [15], and improve the statistics
by running independent MC simulations, called multiple

walkers, in parallel. For further details, consult [14] and
the Supplementary Material (SM) [16].
The renormalized Hamiltonian H ′(σ′) is given by Eq.

6 in terms of Vmin(σ
′). Taking a constant pt, we have

modulo a constant:

H ′(σ′) = −Vmin(σ
′) =

∑

α

(−Jmin,α)Sα(σ
′) (11)

In this finite approximation the renormalized Hamilto-
nian has exactly the same terms of Vmin(σ

′) with renor-
malized coupling constants

K ′

α = −Jmin,α. (12)

The relative importance of an operator Sα in the renor-
malized Hamiltonian can be estimated variationally in
terms of the relative magnitude of the coefficient Jmin,α.
When Jmin,α is much smaller than the other components
of Jmin, the corresponding Sα(σ

′) is comparably unim-
portant and can be ignored. The accuracy of this approx-
imation could be quantified by measuring the deviation
of pVmin

(σ′) from pt(σ
′).

To illustrate the method, we present a study of the
Ising model on a 2D square lattice in the absence of a
magnetic field. We adopt 3 × 3 block spins with the
majority rule. 26 coupling terms were chosen initially,
including 13 two-spin and 13 four-spin products. One
preliminary iteration of variational RG (VRG) was per-
formed on a 45 × 45 lattice starting from the nearest-
neighbor Hamiltonian. The coupling terms with renor-
malized coupling constants smaller than 0.001 in absolute
value were deemed unimportant and dropped from fur-
ther calculations. 13 coupling terms, including 7 two-spin
and 6 four-spin products, survived this criterion and were
kept in all subsequent calculations [16]. Each calcula-
tion consisted of 5 VRG iterations starting with nearest-
neighbor coupling, Knn, only. All the subsequent itera-
tions used the same lattice of the initial iteration. Stan-
dard Metropolis MC sampling [17] was adopted, and the
calculations were done at least twice to ensure that sta-
tistical noise did not alter the results significantly.
In Fig. 1, results are shown for a 300 × 300 lattice

with two initial Knn, equal to 0.4355 and to 0.4365, re-
spectively. When Knn = 0.4365, the renormalized cou-
pling constants increase over the five iterations shown,
and would increase more dramatically with further it-
erations. Similarly, they decrease when Knn = 0.4355.
Thus, the critical coupling Kc should belong to the win-
dow 0.4355− 0.4365. The same critical window is found
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for the 45× 45, 90× 90, 150× 150, and 210× 210 lattices
[16]. Because each iteration is affected by truncation and
finite size errors, less iterations for the same rescaling
factor would reduce the error. For example, 4 VRG iter-
ations with a 2 × 2 block have the rescaling factor of a
16× 16 block. The latter is computationally more costly
than a calculation with 2× 2 blocks, but can still be per-
formed with modest computational resources. Indeed,
with a 16×16 block, RG iterations on a 128×128 lattice
gave a critical window 0.4394− 0.4398 [16], very close to
the exact value, Kc ∼ 0.4407, due to Onsager [18].

The statistical uncertainty of the calculated renormal-
ized coupling constants is smaller with the variational
method than with the standard method [19]. For ex-
ample, using VRG and starting with Knn = 0.4365 on
a 300 × 300 lattice, we found a renormalized nearest-
neighbor coupling equal to 0.38031±0.00002 after one RG
iteration with 3.968×105 MC sweeps. Under exactly the
same conditions (lattice size, initial Knn, coupling terms
and number of MC sweeps) we found instead a renormal-
ized nearest-neighbor coupling equal to 0.3740 ± 0.0003
with the standard method. In the VRG calculation we
estimated the statistical uncertainty with the block aver-
aging method [20], while we used the standard deviation
from 14 independent calculations in the case of the stan-
dard method. A small difference in the values of the cou-
pling constants calculated with VRG and the standard
method is to be expected, because the two approaches
are different embodiments of the truncated Hamiltonian
approximation.
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FIG. 1. (color online). Variation of the renormalized coupling
constants over five VRG iterations on a 300 × 300 lattice.
Each iteration has 1240 variational steps, each consisting of
20 MC sweeps. 16 multiple walkers are used for the ensemble
averages in Eqs. 9 and 10. For clarity, we only show the four
largest renormalized couplings after the first iteration. Full
plots are reported in the SM [16]. Top: Simulation starting
with Knn = 0.4365. Bottom: Simulation starting withKnn =
0.4355.

According to theory [21], the critical exponents are ob-

tained from the leading eigenvalues of
∂K′

α

∂Kβ
, the Jaco-

bian matrix of the RG transformation, at a critical fixed

point. In order to find
∂K′

α

∂Kβ
near a fixed point, we need to

know how the renormalized coupling constantsK ′

α from a
RG iteration on the Hamiltonian H =

∑
β KβSβ , change

whenKβ is perturbed to Kβ+δKβ, for fixed target prob-
ability pt and operators Sα. The minimum condition, Eq.
9, implies dΩ

dJα
= 0, i.e. for all γ:

∑
σ
Sγ(σ

′)e−
∑

β
(KβSβ(σ)−K′

βSβ(σ
′))

∑
σ
e−

∑
β(KβSβ(σ)−K′

β
Sβ(σ′))

= 〈Sγ(σ
′)〉pt

, (13)

and

∑
σ
Sγ(σ

′)e−
∑

β((Kβ+δKβ)Sβ(σ)−(K′

β+δK′

β)Sβ(σ
′))

∑
σ
e−

∑
β
((Kβ+δKβ)Sβ(σ)−(K′

β
+δK′

β
)Sβ(σ′))

= 〈Sγ(σ
′)〉pt

.

(14)

Expanding Eq. 14 to linear order in δK ′

α and δKβ, we
obtain ([16])

Aβγ =
∑

α

∂K ′

α

∂Kβ

·Bαγ , (15)

where

Aβγ = 〈Sβ(σ)Sγ(σ
′)〉V − 〈Sβ(σ)〉V 〈Sγ(σ

′)〉V , (16)

and

Bαγ = 〈Sα(σ
′)Sγ(σ

′)〉V − 〈Sα(σ
′)〉V 〈Sγ(σ

′)〉V . (17)

Here 〈·〉V denotes average under the biased Hamiltonian,

H̃ =
∑

β

[
KβSβ(σ)−K ′

βSβ(σ
′)
]
.

If we required the target average of Sγ(σ
′) to coin-

cide with the unbiased average under H =
∑

β KβSβ ,
K ′ would necessarily vanish and Eqs. 16-17 would coin-
cide with Swendsen’s formulae [7]. If we used a uniform
target probability, the σ

′ at different sites would be un-
correlated, and critical slowing down would be absent.
In practice, in order to compute the critical exponents,

we first need to locate Kc. From the above calculations
on the 45×45, 90×90, and 300×300 lattices with a 3×3
block spin, we expect that Kc = 0.436 should approxi-
mate the critical nearest-neighbor coupling in our model.
Indeed an RG iteration starting from this value gives cou-
plings that remain essentially constant, as illustrated in
Figs. S11-S13 of the SM [16].
Then, we use Eqs. 15-17 to compute the Jacobian of

the RG transformation by settingKc = 0.436. The renor-
malized coupling constants after the first RG iteration
represent Kα, and those after the second RG iteration
represent K ′

α. The results for biased and unbiased en-
sembles are shown in Table I, which reports the leading
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even (e) and odd (o) eigenvalues of
∂K′

α

∂Kβ
when includ-

ing 13 coupling terms for the three L × L lattices with
L = 45, 90, and 300. As seen from the table, biased and
unbiased calculations give slightly different eigenvalues,
as one should expect, given that the respective calcula-
tions are different embodiments of the truncated Hamil-
tonian approximation. For L = 300 the results are well
converged in the biased ensemble. By contrast, we were
not able to obtain converged results for this lattice in the
unbiased ensemble on the time scale of our simulation.
The absence of critical slowing down in the biased simu-
lation is demonstrated in Fig. 2, which displays the time
decay of a correlation function in the biased and unbiased
ensembles. See also Figs. S14-S15 of the SM [16].

L λ
e
1 λ

o
1

unbiased 45 2.970(1) 7.7171(2)
90 2.980(3) 7.7351(1)

biased 45 3.045(5) 7.858(4)
90 3.040(7) 7.870(2)
300 3.03(1) 7.885(5)

Exact 3 7.8452

TABLE I. Leading even (e) and odd (o) eigenvalues of
∂K

′

α

∂Kβ

at the approximate fixed point found with VRG, in both the
unbiased and biased ensembles. The number in parentheses
is the statistical uncertainty on the last digit, obtained from
the standard error of 16 independent runs. 13 (5) coupling
terms are used for even (odd) interactions. The calculations
used 106 MC sweeps for the 45× 45 and 90× 90 lattices, and
5× 105 sweeps for the 300× 300 lattice.
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FIG. 2. (color online). Time correlation of the estimator
A = S0(σ)S0(σ

′) on 45 × 45 and 90 × 90 lattices (Eq. 16).
S0 is the nearest neighbor term in the simulations of Table I.

The fixed point used for Table I is approximate, and we
did not make any effort to fine tune the approximation.
Refinements could be done iteratively using Eqs. 15-17,
as we will discuss in a future paper. There is an im-
portant benefit in knowing accurately the location of the
fixed point, because then a single RG iteration, instead
of multiple implicit iterations would suffice to compute
the Jacobian. Moreover, one could use small block spins,
having a smaller statistical uncertainty than larger block
spins.
In summary, we have unified the calculation of critical

exponents and renormalized couplings within the same

framework. A key feature of our approach is that we
adopt a biased ensemble, 〈·〉V , for the averages. This
not only simplifies the algorithm, but also enhances the
sampling. In fact, the original motivation for the varia-
tional principle [14] was to overcome the long correlation
time in first-order phase transitions. The bias poten-
tial constructed by optimizing the functional acquires a
history- dependence that discourages the sampling of pre-
viously visited configurations [14], thereby breaking the
long correlation time of the unbiased simulation. In the
RG context, enhanced sampling eliminates critical slow-
ing down. We expect that it should be also helpful in
systems with deep local free energy minima, as the vari-
ational method was originally designed to deal precisely
with such systems.

The finite size of the numerical samples is a source of
error. If the RG iterations are carried out on a single
L × L lattice, the coarse grained lattice will have size
L
b
×L

b
. Then, as noted in [19], the calculated renormalized

couplings will have different size errors on the L×L and
L
b
× L

b
lattices. A better way, as suggested in [22], would

be to perform calculations on two lattices, L × L and
L
b
× L

b
, so that the coarse grained lattice rescaled by bn,

at the nth iteration starting from L× L, would coincide
with the lattice rescaled by bn−1, at the (n−1)th iteration
starting from L

b
× L

b
. In this way, two successive RG

iterations have the same lattice size, with a significant
cancellation of finite size errors. We plan to discuss in a
future paper how this idea could be implemented within
VRG.

Finally some considerations are in order. It was noted
in [23] that RG ideas can be used to obtain the full
thermodynamic functions, not just their singular com-
ponents. In fact one has [23]:

exp [H ′(K ′;σ′) +Ng(K)] =
∑

σ

δτ(σ),σ′ exp [H(K;σ)]

(18)
Here g(K) is the regular component of the free energy,
which can also be accessed within our approach, as shown
in the SM [16] where we demonstrate that g(K) is pre-
cisely the thermodynamic free energy per site in the
biased ensemble. It is thus interesting, and somewhat
surprising, that the information on the critical behavior
is fully contained in the statistical ensemble 〈·〉V , even
though g(K) is a regular function and 〈·〉V does not show
singular behavior.

Our approach can be extended beyond lattice mod-
els with discrete (spin) degrees of freedom. Field the-
oretical models, like the Ginzburg-Landau free energy
functional Φ[ψ] ([24][25]) could be studied by represent-
ing the field ψ(x) on a regular lattice, either in direct
or reciprocal space. The values of the field on the lat-
tice are a set of continuous and unbounded degrees of
freedom. RG transformations on these variables can be
studied with VRG, by conveniently adopting a Gaus-
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sian rather than a constant probability pt. We note that
two levels of coarse-graining are required to study criti-
cal phenomena starting from the atomistic scale. First,
one constructs a Ginzburg-Landau functional by coarse-
graining the atomistic model and then one applies RG to
the Ginzburg-Landau model. Interestingly, both levels of
coarse graining are greatly facilitated by the same varia-
tional principle [14] adopted here to formulate VRG. The
first step of this program, i.e. extracting a Ginzburg-
Landau model from atomistic simulations has recently
been presented in the literature [26].

In this paper we have focused on static phenomena, but
MCRG approaches exist also for dynamic critical phe-
nomena (see e.g. [27]). Formulating VRG for dynamics
is beyond the scope of the present study and is left to
future investigation.

All the codes used in this project were written in C++,
and would be available upon request. The authors would
like to thank C. Castellani and L. Pietronero for dis-
cussions. Partial support for this work was provided by
the Department of Energy under Grant no. DE-FG02-
05ER46201. Part of this work was done while R.C. was
on sabbatical leave at the Sapienza University in Rome
(Italy). The authors are grateful for the hospitality of the
Beijing Computational Science Research (CSRC) during
the final stage of manuscript preparation.
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