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We investigate the statistical arrow of time for a quantum system being monitored by a sequence
of measurements. For a continuous qubit measurement example, we demonstrate that time-reversed
evolution is always physically possible, provided that the measurement record is also negated. De-
spite this restoration of dynamical reversibility, a statistical arrow of time emerges, and may be
quantified by the log-likelihood difference between forward and backward propagation hypotheses.
We then show that such reversibility is a universal feature of non-projective measurements, with
forward or backward Janus measurement sequences that are time-reversed inverses of each other.

The classical dynamics of a conservative system is
time-reversible. If we watch a movie backwards in the
absence of friction, it will show dynamics perfectly con-
sistent with the laws of motion, so we may not distin-
guish whether we watch the movie forward or backwards
in time from the dynamics alone. However, when the
system has more than a few degrees of freedom—such as
during the starting break in a game of pool—then the
likelihood that the evolution is either forward or back-
ward in time may differ, so it becomes possible to dis-
tinguish an arrow of time statistically. The existence of
such an arrow of time is a fundamental question, and has
been of interest in many areas of physics [1–3].

The quantum dynamics of a conservative and unmea-
sured system is similarly time-reversible. For example,
the Schrödinger equation becomes invariant under time-
inversion if the position-space wavefunction is complex-
conjugated. This is a special case of a general anti-
unitary time-reversal operation [4], and is sufficient to
restore time symmetry for a closed quantum system.

The introduction of a sequence of measurements seems
to break such dynamical symmetry, however, for two
distinct reasons. First, obtaining definite measurement
results traditionally collapses the wavefunction, which
produces non-unitary evolution that is distinct from the
Schrödinger equation and not reversed by the same anti-
unitary operation. Second, the randomness of each mea-
surement creates an intrinsic asymmetry between an un-
known future and a definite past. These reasons have
contributed to the view that quantum mechanics is fun-
damentally asymmetric in time [5, 6].

We seek to clarify this apparent discrepancy between
classical and quantum reversibility. In the past, such
efforts to restore reversibility have tried reformulat-
ing quantum mechanics in a more symmetric way [7].
For example, the “two-time” formalism of Aharonov,
Bergmann, and Lebowitz [8] removes the indefiniteness
of the future by introducing a second boundary condi-
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FIG. 1. A single quantum trajectory of a continuously moni-
tored qubit. The x and z Bloch sphere coordinates of a qubit
change due to both unitary and measurement dynamics. The
red and blue colors denote positive and negative values of the
x coordinate. The boundary states are shown as green and
red dots. Is time running forward with measurement record
r(t) or backward with flipped record r̃(t)?

tion (or postselection) that brackets a time interval, and
avoids non-unitary state collapse by considering infinites-
imally weak measurements that do not affect the state
within that interval [9]. Physical measurements have
nonzero strength, however, so will (at least partially)
collapse the state and seemingly spoil the reversibility
of such a scheme [10]. Nevertheless, partial collapses
of the state may still be fully restored probabilistically
(“wavefunction uncollapse”), even if the initial state is
unknown [11, 12]. This uncollapsing phenomenon has
been confirmed experimentally in superconducting and
optical systems [13–15], which raises the question once
more whether the time symmetry of a sequence of sev-
eral such measurements could be similarly restored.

In this Letter, we demonstrate how to restore time
reversal symmetry for a sequence of nonprojective mea-
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surements that takes into account the insights from mea-
surement uncollapse. This is a nontrivial problem, since
correlation functions of even arbitrarily weak, ostensibly
non-invasive, measurements break time-reversal symme-
try in general [16, 17]. We solve the general problem by
considering two complementary measurement sequences,
one pointing into the future, and another into the past,
that are time-reversed inverses of each other. We name
these complements Janus sequences. For qubits, this gen-
eral solution takes a particularly simple form that can
be taken to the limit of time-continuous measurements,
producing so-called quantum trajectories [18–23]. Quan-
tum trajectory theory eliminates any remaining separa-
tion between Schrödinger equation dynamics and mea-
surement disturbance, and replaces them with a single
stochastic process that includes both. In recent years
there has been strong experimental evidence in support
of this type of conditional quantum dynamics; see e.g.
Refs. [24–29] for a sample of current works.

We pose the time-reversibility problem in the following
way: Suppose we are given a movie of stochastic quantum
state dynamics along with its associated noisy detector
output (a sort of “soundtrack” for the movie). We are
then asked to determine whether the movie shows the
forward evolution of the state, or whether the movie has
been reversed, as depicted in Fig. 1. In the simplest case
of a monitored qubit, we find that such a movie played
backwards obeys time-reversed equations of motion if we
also flip the sign of its soundtrack (measurement record).
We stress that this is not a microscopic time-reversal of
the measurement apparatus, nor is it a backward infer-
ence (past quantum state) kind of dynamics [30, 31]—
our time reversal shows equally valid forward dynamics.
After watching the movie for a longer duration while lis-
tening to its soundtrack, we can distinguish a forward
from a time-reversed movie with increasing certainty in
order to probabilistically find the arrow of time.

The usual thermodynamic arrow of time refers to low
entropy configurations changing into high entropy under
the thermalization process (see e.g. Ref. [32]). Our quan-
tum measurement arrow time is more similar to the situ-
ation in non-equilibrium statistical physics. The time ar-
row can be related to the distinguishability of the distri-
butions of quantities, such as work done between a given
process and its time reversed twin [33–35]. In such situ-
ations the system entropy can even decrease [36]. How-
ever, these treatments typically have a temperature as-
sociated with the environment, and the system begins
in equilibrium. In contrast, we consider a completely
nonequilibrium situation, where all fluctuations are fun-
damentally quantum in nature arising from the measure-
ment process, with the system starting in an arbitrary
state.

Note that to achieve perfect time reversal we must
not lose information to the environment, other than to
an ideal, quantum-limited, detector. That is, we must

consider a system that is being monitored without ad-
ditional noise or “quantum friction”, just as in classi-
cal physics. As a physical example, a superconducting
qubit like a transmon [37] may be continuously moni-
tored with microwaves using circuit quantum electrody-
namics [24, 25], yielding a time-dependent (noisy) ho-
modyne quadrature readout I(t); such monitoring would
yield time-reversible evolution if the amplifier were quan-
tum limited with no loss in the readout chain (i.e., no
readout inefficiency) [38], and were otherwise decoupled
from its environment. Similarly, the current I(t) flow-
ing through a quantum point contact can continuously
monitor a double-quantum dot charge qubit with nearly
quantum-limited efficiency [21, 39, 40].

Continuous qubit measurement.—We consider such a
quantum-limited continuous qubit measurement as an il-
lustrative example, which we will later generalize to an
arbitrary sequence of measurements. Specifically, con-
tinuously monitoring the σz observable produces a noisy
informational signal r(t), which is shifted and rescaled
so that its average is ±1 if the quantum system is pre-
pared in eigenstates of σz. The stochastic nature of r(t)
arises from the intrinsic quantum fluctuations in the de-
tector, e.g., quantum vacuum fluctuations [24], which sets
the characteristic measurement time τ for achieving unit
signal-to-noise ratio. We also consider a qubit Hamilto-
nian, given by H = ~Ωσy/2, produced (for example) by
a microwave drive, which causes rotation in the x-z plane
of the Bloch sphere.

Collecting a particular measurement trace from the de-
tector r(t) allows us to infer the conditional quantum
state as a function of time, {x(t), y(t), z(t)}, from the
Bloch equations of motion,

ẋ = −Ωz − xzr

τ
, ẏ = −yzr

τ
, ż = Ωx+

(1− z2)r

τ
, (1)

also known as a quantum trajectory. These equations
assume ideal conditions, including efficient detection and
Markovian evolution, so any residual entanglement be-
tween the qubit and detection apparatus is assumed to
vanish (e.g., a microwave resonator must operate in the
“bad cavity” limit). For non-differentiable r(t), these
equations remain valid as stochastic differential equations
with time-symmetric (Stratonovich) derivatives [21]. We
observe that Eqs. (1) are time reversal invariant under
the transformations: t 7→ −t, Ω 7→ −Ω, keeping x, y, z in-
variant, provided that the record is also flipped, r 7→ −r.
With these changes, a quantum movie for a single mea-
surement run is the same when played backward, as il-
lustrated in Fig. 1 for the special case of y = 0, thus
restoring time symmetry. Specifically, a forward trajec-
tory with initial state ρi := (xi, yi, zi) at time t = 0, final
state ρf := (xf , yf , zf ) at time t = T , and record rF (t)
is equivalent to a backwards trajectory with initial state
ρf , final state ρi, and reversed record rB(t) = −rF (T −t)
[41].



3

Arrow of time.—We will now show that although such
continuous qubit measurement dynamics is time rever-
sal invariant, we can nevertheless probabilistically distin-
guish forward and backward evolution, yielding a statis-
tical arrow of time. The task of distinguishing a past-to-
future versus a future-to-past dynamics can be phrased
as a hypothesis testing problem: is the movie shown in
Fig. 1 of duration T running forward (F) or backward
(B)?

To test these hypotheses, let the prior probabilities
P (F ) and P (B) = 1 − P (F ) indicate our initial guess
whether the movie is running forward or backward. Let
PF (r(t)) = P (r(t)|ρi) be the probability density of
obtaining the measurement record r(t), supposing the
movie is running forward from an initial state ρi; sim-
ilarly, let PB(r(t)) = P (−r(T − t)|ρf ) be the probabil-
ity density that supposes the movie is running backward
from a final state ρf . We then use Bayes’ rule to compute
the likelihood that the movie is running in the forward
direction given the movie and its soundtrack,

P (F |r(t)) =
PF (r(t))P (F )

PF (r(t))P (F ) + PB(r(t))P (B)
. (2)

If we have no a priori bias about this question, we set
P (B) = P (F ) = 1/2, to find the likelihood

P (F |r(t)) =
R

1 +R
, R =

PF (r(t))

PB(r(t))
. (3)

We therefore conclude that we can make no statistical in-
ference only if the forward and backward probability den-
sities are identical (i.e., the probability ratioR = 1). The
logarithm of this ratio, lnR, is thus a natural discrimi-
nator, with positive values inferring forward motion and
negative values inferring backward motion. The mean
value lnR over forward-generated trajectories thus gives
an estimate of the statistical arrow of time for contin-
uous quantum measurement, also named the “length of
time’s arrow” [42]. It is similar to the relative entropy
(also known as the Kullback-Leibler divergence) between
forward and backwards distributions. Researchers in
nonequilibrium statistical physics have used analogous
arrow-of-time hypothesis discrimination to quantify the
entropy production (or irreversibility) of mesoscopic sys-
tems [34, 42–45]. There has been recent cross-pollination
of the methodology in these fields [46, 47].

To find the relative probability densities of the tra-
jectories r(t) versus −r(T − t), given a quantum tra-
jectory, we may expand the distribution of results to
first order in a small time-step to find P (r(t)|ρi) ∝
exp[−

∫ T

0
dt′(r(t′)2 − 2r(t′)z(t′) + 1)/2τ ] [48, 49], where

the backwards distribution simply time-reverses the in-
tegral, and flips the sign of r at every time [50]. The
arrow of time ratio R Eq. (3) is given in terms of the
probability densities of the forward trajectories r(t) and

the backward trajectories −r(T − t), so [50]

lnR =
2

τ

∫ T

0

dt r(t)z(t). (4)

This relative log-likelihood will then categorize each run
of the experiment as being more likely to be running
forward in time, lnR > 0, or backward in time, lnR < 0.
In the latter case, we interpret Eq. (4) to mean that the
result r(t) “disagrees” with the state component z(t) it
is estimating (has the opposite sign) more often than it
“agrees” with it during the run, making reversed time-
evolution more likely.

In the Markovian limit, applicable on a time scale
longer than any correlation of the detector or detector
resolution time, the detector fluctuations may be ap-
proximated as an additive white noise stochastic pro-
cess [12, 21, 23], with the detector output signal given
by r(t) = z(t) +

√
τ ξ(t), where ξ(t) is a unit vari-

ance, delta-correlated stochastic variable. This decom-
position clearly shows the breaking of time-reversal sym-
metry on the statistical level, since inverting the sign of r
while keeping z invariant requires a statistically anoma-
lous time-reversed realization of the noise. Using this
decomposition, the average of the relative log-likelihood
in Eq. (4) may be calculated to give the positive-definite

value lnR = (1/τ)
∫ T

0
dt (1 + 〈z(t)2〉) after the stochas-

tic average (see Supplemental Material [51]), indicating
a forward time arrow.

Numerical results for the arrow of time.—Consider the
case of persistent, diffusive, Rabi oscillations [52], when
Ω � τ−1, so that the qubit performs oscillations in the
x-z plane with phase diffusion. For T > 2π/Ω, the Rabi
oscillations average to 〈z2〉 ≈ 〈(cos Ωt)2〉 = 1/2, so

lnR ≈ 3T

2τ
. (5)

In this case, the average distinguishability of the forward
from the backward arrow of time increases linearly with
the duration of the measurement run.

This statement may be made more precise by examin-
ing the entire distribution of lnR, which is shown from
numerical simulations in Fig. 2 using a Rabi period of
2π/Ω = 0.5τ . For durations longer than the Rabi period,
T > 2π/Ω, the mean grows linearly with the duration of
the experiment, as predicted in (5). A calculation simi-
lar to the mean gives an approximate variance of 2T/τ .
The full distribution of lnR becomes a broad Gaussian in
this regime of T > 2π/Ω, with the aforementioned mean
and variance, see Fig. 2c,d. Thus, the probability of er-
roneously guessing a forward trajectory to be backward
is the area of the negative tail of the Gaussian

Perr ≈
1

2

[
1− Erf

(
3

4

√
T

τ

)]
. (6)
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FIG. 2. Histograms of lnR for 2 × 106 runs of monitored
Rabi oscillations with period 2π/Ω = 0.5τ and measurement
time τ , starting from x(t = 0) = 1. The ratio of forward to
backward probability distributions R discriminates the like-
lihood for a trajectory to be forward (lnR > 0) or backward
(lnR < 0). The probability Perr of erroneously guessing re-
versed time is the red shaded area to the left of the vertical
dashed line at lnR = 0. The vertical solid line is the mean
lnR, a measure of the statistical arrow of time. The dura-
tions T = (0.02, 0.2, 1.18, 2.0)τ are shown in subfigures (a–d),
showing that for T ≥ 2π/Ω (c,d), the distribution has con-
verged to a Gaussian with mean 3T/2τ and variance 2T/τ
(dashed profile in b,c,d).

Consequently, if we wish to distinguish the forward-in-
time arrow from the backward arrow to greater than n
standard deviations, we require a duration T ≥ 8n2τ/9.
As can be seen from the histograms in Fig. 2, even for
reasonably long duration T it is common to observe read-
outs that appear to be reversed. We show examples of
this, as well as present the simpler no-drive case, in the
Supplemental Material [51].

Janus measurement sequences.—We now generalize
the simple qubit example to arbitrary sequences of gen-
eralized measurements. First, we reverse the direction of
time for Schrödinger equation evolution in the standard
way [53], by introducing an anti-unitary time-reversal
operation Θ, satisfying 〈ΘΦ|ΘΨ〉 = 〈Ψ|Φ〉. In the
case of position wavefunctions, Θ is simply the com-
plex conjugate operation. More generally, Θ must cor-
rectly time-reverse all physical observables such as posi-
tion, ΘxΘ−1 = x, momentum ΘpΘ−1 = −p, and spin
ΘSΘ−1 = −S, as well as the sign of any external mag-
netic field, B → −B. Applying the time-reversal oper-
ator Θ to a quantum state |Ψ(t)〉 inverts its temporal
meaning, such that forward unitary time evolution Ut

correctly rewinds the dynamics: UtΘ|Ψ(t)〉 = Θ|Ψ(0)〉.
Second, we add sequences of generalized measurements

to the unitary dynamics. We first consider a forward

sequence of measurements in time, A,B,C, . . ., which
will be one of two distinct Janus sequences that we will
need. This sequence has possible measurement results
j = a, b, c, . . ., each of which will partially collapse the
quantum state according to a measurement operator,
Ma,Mb,Mc, . . .. An initial state |Ψ〉 thus evolves into

|Φ〉 ∝ . . .McMbMa|Ψ〉 ≡MF |Ψ〉, (7)

where MF ≡ . . .McMbMa. Note that we include any
intermediate unitary time evolution Ut inside the Kraus
operators. This formulation is quite general, so the mea-
surement results may be discrete or continuous variables.

We next introduce a corresponding backwards Janus
sequence, which is a series of (in general different) mea-
surements A′, B′, C ′, . . ., with outcomes j′ = a′, b′, c′, . . .
and Kraus operators MB ≡ Ma′Mb′Mc′ . . . also applied
sequentially to the system, but in reverse order to the
time-reversed “initial” state Θ|Φ〉. Crucially, for some
possible results (j, j′) of both sequences, we wish for
the system state to rewind its path, restoring the initial
(time-reversed) state: MBΘ|Φ〉 ∝ Θ|Ψ〉. We can find
the condition for this to happen by inserting 1 = Θ−1Θ
between every pair of operators, yielding

Mj′ ∝ (ΘMjΘ
−1)−1, (j, j′) = (a, a′), (b, b′), . . . (8)

That is, each measurement operator of the backward
Janus sequence must be proportional to the inverse time-
reversed measurement operator of the forward Janus se-
quence. In the special case of no measurement collapse,
this constraint correctly reproduces the expected rela-
tionship between the unitary time-evolution operators
and the anti-unitary time-reversal operators [7, 53]. For
a single measurement, this condition may be understood
as an application of quantum measurement uncollapse
[11–15]. We emphasize that such an inverse operator may
always be constructed as a measurement operator belong-
ing to some positive operator valued measure (POVM)
set [12] (see Ref. [54] for an introduction to generalized
measurements). As alluded to above, there is no guaran-
tee that the correct Janus sequences will happen; how-
ever, what is important is that such a pair of sequences
is physically possible.

Switching from a forward to a backward Janus se-
quence generalizes the need for inverting the measure-
ment record r(t) in the qubit case of Fig 1. Now con-
sider the analogous game, where a movie of the state dy-
namics from one of a Janus sequence of measurements is
presented to us, along with a corresponding sequence of
forward measurements (A,B,C, . . .), or backward mea-
surements (. . . , C ′, B′, A′). We must then guess whether
the movie with one of these two soundtracks is running
backward or forward in time. There is no way to tell from
the dynamics: Each step in each quantum state movie
direction with matched soundtrack is a possible forward
evolution.
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Nevetheless, as with qubit the case before, we can still
statistically discern the arrow of time. The likelihood
functions to test the forward or backward hypotheses are
constructed directly from the collective forward Janus
measurement operator MF =

∏
j Mj , and collective

backward Janus measurement operator MB =
∏

j′ Mj′ ,
as used above. The probability of all of the measurement
results, given (known) forward or reverse Janus sequences
is PF (a, b, c, . . .) = ‖MF |Ψ〉‖2, or PB(. . . , c′, b′, a′) =
‖MBΘ|Φ〉‖2, so the discriminator that generalizes Eq. (3)
is the log of their ratio R = PF ({j})/PB({j′}).

Conclusions.—We find that it is possible to time-
reverse the dynamics of a quantum system, even when
it is being measured. For every nonprojective measure-
ment, the forward measurement dynamics has an as-
sociated backwards measurement dynamics. Therefore,
given a sequence of measurements and the quantum state
trajectory (“the movie”), it is impossible to say whether
the movie is being played forward or backward from dy-
namics alone. However, by examining the relative prob-
ability of whether the movie is playing forward or back-
ward, given the measurement results (its “soundtrack”),
a statistical arrow time still emerges. The physical ori-
gin of this statistical arrow is the dynamical contraction
(collapse) of the set of possible final states that are com-
patible with the observed measurement record. Of the
two possible evolutions, one will display a more likely
contractive evolution. We have shown how to test both
aspects of the time-arrow question both in continuously
measured qubits, as well as any measurement sequence
by constructing a backwards Janus sequence which would
show a possible time-reversed quantum state movie con-
sistent with the original measurement sequence.
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