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We use the ab initio Bethe Ansatz dynamics to predict the dissociation of one-dimensional cold-
atom breathers that are created by a quench from a fundamental soliton. We find that the disso-
ciation is a robust quantum many-body effect, while in the mean-field (MF) limit the dissociation
is forbidden by the integrability of the underlying nonlinear Schrödinger equation. The analysis
demonstrates the possibility to observe quantum many-body effects without leaving the MF range
of experimental parameters. We find that the dissociation time is of the order of a few seconds for
a typical atomic-soliton setting.

Under normal conditions, interacting quantum Bose
gases do not readily exhibit signatures of their corpus-
cular nature, but rather follow the behavior predicted
by mean-field (MF) theory. The observability of micro-
scopic quantum effects involving a substantial fraction
of the particles in a coherent macroscopic setting gener-
ally requires going beyond-MF, for example, in low den-
sity in 1D [1, 2] or high density in 3D. In 3D systems,
the high-density Lee-Huang-Yang corrections, which are
induced by quantum correlations, were realized exper-
imentally using the Feshbach resonance [3] and in the
spectacular form of “quantum droplets” in dipolar [4–
6] and isotropic [7] bosonic gases., i.e., as self-trapped
states stabilized against the collapse by the beyond-MF
self-repulsion. This stabilization was predicted in Refs.
[8–10]. Quantum effects involving a macroscopic num-
ber of atoms in collapsing attractive 3D gases and collid-
ing condensates were also observed [11–15] and analyzed
[16, 17] in the MF density range.

A generic opportunity to observe beyond-MF effects
arises when a particular symmetry of the MF dynamics,
which prohibits a certain effect, is broken at the micro-
scopic level thus making observation of the effect pos-
sible. For instance, the scale invariance in the dynam-
ics of a harmonically trapped 2D Bose gas nullifies the
interaction-induced shift of the frequency of monopole
excitations for all excitation amplitudes; however, this
scale invariance is broken by the quantum many-body
Hamiltonian, leading to a small shift, albeit discernible
on a zero background [18]. In this context, the symmetry
breaking by the secondary quantization may be consid-
ered as a manifestation of a general phenomenon known
as the quantum anomaly [19]. In this Letter we develop
a similar strategy for predicting beyond-MF effects in
the one-dimensional (1D) self-attractive Bose gas in an
MF range of parameters. The respective MF equation
amounts to the nonlinear Schrödinger (NLS) equation,
integrable by the inverse-scattering transform [20]. The

NLS rigidly links the structure of a time-dependent solu-
tion to its initial form, with many features of the latter
rendered identifiable in the former. In particular, a sud-
den increase of the strength of the attractive coupling
constant by a factor of 4, i.e. an interaction quench, con-
verts a fundamental soliton into an exact superposition
of two solitons with zero relative velocity, zero spatial
separation, and with a mass ratio 3 : 1 [21–23]. The two
superimposed solitons have different chemical potentials,
hence the density oscillates as a result of interference.
Such an exact superposition of fundamental solitons is
identified as an NLS breather.

Further, quantum fluctuations in solitons have also
been analyzed in terms of the exact Bethe-ansatz (BA)
solution [24–27], the linearization approximation [28],
and the numerical positive-P representation [29, 30].
These effects have been observed in experiments [31–34],
see also review [35]. In particular, in the quantum many-
body theory, contrary to its MF counterpart, the center-
of-mass (COM) position of a soliton is a quantum coordi-
nate whose conjugate momentum is subject to quantum
fluctuations [36–38].

The MF breather generated by the quench does not
split due to the absence of any relative velocity in the
MF. We predict, however, that the spread of the relative
velocity of the two solitons leads to dissociation, and thus
reveals a many-body quantum effect.

In Ref. [39] it is shown, using a Bose-Hubbard model,
that higher-order solitons also break up due to many-
body quantum effects. The fact that a nonintegrable lat-
tice model, with thermalization of eigenstates, also pre-
dicts many-body quantum effects is relevant for compar-
ison with results of the present work.

We considerN atoms of massmmoving in a waveguide
with a transverse trapping frequency ω⊥. In the “deep
1D” approximation they can be considered as particles
moving in the x direction, with zero-range interactions
of strength g = 2~aω⊥ [40], where the s-wave scattering
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length a can be tuned by an external magnetic field via
the Feshbach resonance. The corresponding Lieb-Liniger
Hamiltonian is [41]

Ĥ = − ~
2

2m

N
∑

j=1

∂2

∂x2
j

+ g
∑

j<j′

δ(xj − xj′ ) . (1)

This problem has an exact BA solution [24, 42]. Due
to the translational invariance of the Hamiltonian (1),
its eigenfunctions are delocalized, having a homogeneous
density. For attractive interactions with g < 0, there
are also eigenstates in the form of one or several several
strings – bound states of several particles, i.e., quantum
solitons [24, 25, 43]. Although they remained a theo-
retical concept since they were introduced, very recently
similar states — the Bethe strings — have been directly
observed in an antiferromagnetic Heisenberg-Ising chain
[44]). A superposition of strings with different velocities
may remain localized for a finite time, so that it carries
over into an MF multi-soliton (breather) in the limit of
N → ∞ [26–28]. Normalization factors for multi-string
states were derived in Ref. [45].
We assume that, at t < 0, the interaction strength

was g0 = g/4, and the system contained a single-string

state ϕ
(0)
N with zero COM velocity. At t = 0, the exter-

nal magnetic field suddenly changes, switching the inter-
action strength to g, i.e., applying a 4-fold quench to
the system. The exact BA calculation, starting from
the quenched state, makes it possible to directly com-
pare the result in the quantum many-body system with
its exactly known MF counterpart — the second-order
breather, which is generated by the 4-fold quench [22].
This is, essentially, the objective of the present work.
After the application of the quench, the many-body

configuration will be a superposition of a single-string
state ϕN , double-string states ϕN1,N−N1,v, where v is
the relative velocity of two strings composed of N1 and
N − N1 atoms, and multi-string states. On the other
hand, a fundamental quantum soliton is a superposition
of the single-string states with different COM velocities.
These states are mutually orthogonal due to the COM
velocity conservation, therefore probabilities of quench-
triggered transitions from the pre-quench fundamental-
soliton state to multi-soliton ones will be the same as for
the delocalized string states. The probabilities are calcu-
lated analytically using the exact BA solution [46]. It is
the basic technical result of the present work, which un-
derlies the physical considerations. First, the probability
to remain in the single-string state is
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∣

∣
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For the double-string states the probabilities depend on
the relative string velocity v > 0 and the string compo-
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FIG. 1. Channel-selective probability distributions for the
relative velocity [see Eq. (2)] of the dissociation products,
produced by the application of the quench to the single string
(fundamental quantum soliton). The black solid and red dot-
dashed lines show dP15,5/dv and dP3,1/dv, for N = 20 and 4,
respectively and the same ratio, N1/ (N −N1) = 3 : 1, as the
MF breather. Plots for other ratios have similar shapes except
for ones with N1 = N/2, which are shown by the blue long
and magenta short dashes (106dP10,10/dv and 10dP2,2/dv, re-
spectively). The velocity scale v0 is defined by Eq. (3).

sition,

dPN1,N−N1
(v)

dv
= (2− δN1,N−N1

)
∣

∣

∣

〈
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〉
∣

∣

∣

2

.

(2)
It is a sum of the probabilities corresponding to velocities
v and −v for N1 6= N−N1, while for N1 = N/2 the states
with v and −v are identical. Examples of the probabili-
ties are displayed in Fig. 1, for N = 4 and N = 20. The
natural velocity scale is

v0 = |g|/(2~) ≡ aω⊥ (3)

Total probabilities of the transition to double-string
states with fixed N1,

PN1
≡
∫

∞

0

dPN1,N−N1
(v)

dv
dv, (4)

are presented in Fig. 2 making it obvious that the tran-
sition N → 3N/4 + N/4 features the largest probability,
in agreement with the MF prediction. The cumulative
probability of the transition to all double-string states,
∑[N/2]

N1=1 PN1
, exceeds 80% for N ≥ 8 (here, [...] stand for

the integer part).
Another similarity to the MF is seen in the fact that

the quench-produced configuration, being a superposi-
tion of multi-string eigenstates with different energies,
oscillates in time due to their interference, thus qual-
itatively resembling the breather. The binding energy
of the multi-string solution is the sum of the constitut-
ing string energies, each one being EN1

= −N1(N
2
1 −
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FIG. 2. Total probabilities for different dissociation channels
(4), produced by the application of the g/4 → g quench to
the single string (fundamental quantum soliton) composed
of N = 8, 12, 16, 20, and 23 atoms (black solid, blue long-
dashed, green short-dashed, red dot-dashed, and cyan dot-
dot-dashed lines, respectively).

1)mg2/(24~2) [24, 25]. In particular, the binding-energy
difference between the (N1, N − N1) and (N1 − 1, N −
N1+1) double-string states leads to beatings at frequency
[EN1−1+EN−N1+1− (EN1

+EN−N1
)]/~ = N [N1− (N +

1)/2]mg2/(4~3), which tends to the the MF breather fre-
quency, mg2N2/(16~3), at N1 = 3N/4 → ∞.
Probability distributions for the relative velocity of the

dissociation products, summed up over all double-string
dissociation channels,

P (v) =

[N/2]
∑

N1=1

dPN1,N−N1
(v)

dv
, (5)

is almost independent of N , see its plot as a function of
v/

√
N in Fig. 3.

The numerically calculated half-width at half-
maximum (HWHM), ∆v, of the velocity distribution, de-
fined by P (∆v) = P (0)/2, can be fitted to the following
formula, which is, naturally, close to the

√
N dependence:

∆v ≈ 0.39N0.54v0, (6)

see Fig. 4. The relative velocity can be measured also by
its mean-square value,

〈

v2
〉

=

∫

∞

0

v2P (v)dv/

∫

∞

0

P (v)dv

However, the numerically found root-mean-square
(r.m.s.) velocity increases with N only as

√

〈v2〉 ≈ 0.63N0.36v0, (7)

according to the fit displayed in Fig. 4. The probability
distribution (2) has slowly decaying tails for small N , in
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FIG. 3. Probability distributions [see Eq. (5)], totalled over
all double-string dissociation channels, for the relative veloc-
ity of the emerging strings, as produced by the application of
the quench to the single string (fundamental quantum soliton)
composed of N = 4, 8, 12, 16, 20, and 23 particles (magenta
dotted, black solid, blue long-dashed, green short-dashed, red
dot-dashed, and cyan dot-dot-dashed lines, respectively, the
last three lines are almost indistinguishable). Velocity scale
v0 is taken as per Eq. (3).

particular, dP3N/4,N/4(v)/dv ∼ v−3N at v → ∞. The
tails increase the r.m.s. velocity at small N and, there-
fore, slower its gain with N . On the contrary, due to the
normalization condition, the tails exhaust the width of
the central part of the v distribution at small N , boost-
ing the HWHM growth with N . Then at large N , when
the tail effects fade out, the r.m.s. velocity and HWHM
should gain faster and slower, respectively, than at small
N . These arguments suggest that both measures of the
relative velocity variation assume the same asymptotic
scaling at large N , which should be close to

√
N , ac-

cording to Fig. 3. The eventual fit is displayed in Fig.
4:

∆v ≈ 0.44
√
Nv0. (8)

The following estimate confirms the
√
N scaling for a

typical relative velocity of the solitons, δv. Consider the
system placed in an external harmonic-oscillator (HO)
potential with frequency Ω. Varying Ω from vanishingly
small values towards very large ones, at each Ω one can
apply the g/4 → g quench to the respective ground state.
The figure of merit to monitor is δx̃—the time-averaged
distance, further symmetrized over permutations, be-
tween COMs of two groups of atoms, each containing the
number of atoms ∼ N . At small Ω, the state obtained
right after the quench is unaffected by the external con-
finement, hence the two solitons (strings) start their mo-
tion with the free-space relative velocity δv. Thus, the
distance δx̃ will be dominated by the typical distance
between the solitons placed in the HO potential, δv/Ω,
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FIG. 4. HWHM (pluses) and r.m.s. (crosses) values of the
relative velocity averaged over all double-string (two-soliton)
dissociation channels, as a function of the number of atoms,
N . Fits provided by Eqs. (6), (7), and (8) are shown by the
black solid, red dot-dashed, and blue dashed lines, respec-
tively. The velocity unit is v0 [see Eq. (3)].

which diverges at small Ω. This very long scale governs
the estimate for δx̃, the other potentially relevant length
scale, the average distance between two atoms inside the
same soliton, which is on the order of the size of an indi-
vidual soliton, ∼ ~

2/(m|g|N), does not diverge at Ω → 0.
Thus,

δx̃Ω→0 ∼ δv/Ω .

On the other hand, at large Ω, the effect of the inter-
atomic interactions vanishes and the estimate for δx̃ is
determined by zero-point quantum fluctuations of the
COM position of the cloud containing ∼ N particles:

δx̃Ω→∞ ∼
√

~/(NmΩ) .

A crossover between the two regimes occurs when the in-
teraction energy per particle (comparable to the chemical
potential of the gas, µ), estimated as ∼ µ ∼ mg2N2/~2,
becomes comparable to the HO quantum, ~Ω. Indeed,
when the former is dominated over by the latter, the
interactions are irrelevant, and the system becomes an
HO-confined ideal gas. At the crossover, the two above-
mentioned estimates yield the same value. An estimate
for δv immediately follows:

δx̃Ω→0|µ∼~Ω ∼ δx̃Ω→∞|µ∼~Ω ⇒

δv ∼
√

~Ω

Nm

∣

∣

∣

Ω∼
mg2N2

~3

∼ |g|
~

√
N .

Indeed, this estimate is consistent with the fit (8).
The above results suggest that experimental observa-

tion of the variance in the relative velocity of the soli-
tons due to quantum many-body effects may be pos-
sible. To demonstrate this, we consider 3 × 103 7Li

atoms, in a waveguide with transverse trapping frequency
ω⊥ = 2π × 254 Hz. The initial state is a fundamental
matter-wave soliton, existing at scattering length at<0 =
−1.0 aBohr, which is quenched up to at>0 = −4 aBohr [49].
The resulting state constitutes an NLS breather with an
aphelion density profile proportional to sech2(x/ℓbreather)
and width ℓbreather = 8~2/(mgN) = 36 µm [21, 22]. As-
suming that the splitting of the breather into two soli-
tons becomes apparent when the distance between their
COMs, after evolution time τ , ∆x = ∆v · τ , becomes
comparable to the breather’s width ℓbreather, and using
extrapolation (6) for the relative velocity of the solitons,
we obtain τ ≃ 3 s for the time necessary to certainly ob-
serve the splitting of the breather caused by the quantum
dynamics.

The predicted dissociation time can be made even
shorter at the expense of reducing the cloud population,
assuming that the scattering length simultaneously in-
creases so as to keep productNa at a finite fraction of the
collapse critical value, Na . a⊥, a⊥ ∼

√

~/(mω⊥) being
the size of the transverse vibrational ground state of the
waveguide used. The microscopic velocity scale v0, the
separation velocity ∆v, and the breather size ℓbreather can
be estimated as v0 . ~/(ma⊥N), ∆v . ~/(ma⊥

√
N),

and ℓbreather & a⊥, respectively. Then the breather disso-
ciation time diminishes as τ ∼ ℓbreather/∆v & (1/ω⊥)

√
N

with the decrease of the number of particles.

For the analysis of possibilities for the experimental im-
plementation of the predictions reported here, it is impor-
tant to estimate deviations of real-world settings from the
idealized model [50–52]. In this connection, it is essential
to consider the departure from the one-dimensionality,
as suggested, in particular, by the work aimed at experi-
mental observation of the quantum violation of the scale-
invariance-induced constancy of the monopole-mode fre-
quency in the 2D Bose gas. In that case, weak de-
pendence of the quantum state on the third, confined
dimension tends to mask the quantum many-body ef-
fects [53]. Nevertheless, experiments have clearly demon-
strated that 3D experimental setups with appropriately
designed transverse confinement can be efficiently used
for the emulation of ideal one-dimensional quantum set-
tings, and such emulations are stable against real-world
disturbances. Relevant examples are the creation of the
atomic Newton’s cradle with repulsive interactions [54],
and the realization of the super-Tonks-Girardeau gas [55].
The latter example is especially relevant for the com-
parison with the present analysis, as it is also based on
attractive interactions. Predictions of the MF counter-
part of the Lieb-Liniger model, i.e., the Gross-Pitaevskii
equation, which are also based on the one-dimensionality
and integrability, are very well confirmed in numerous ex-
periments with matter-wave solitons [56–60]. The well-
known stability of the exact solution of the Lieb-Liniger
model [24, 42] clearly means that the results may only be
slightly perturbed by other distortions, such as external
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fluctuations and inhomogeneities.

As concerns the full 3D analysis, an example which
makes it possible to explicitly compare the MF approxi-
mation and its many-body counterpart is offered by the
problem of the stabilization of the gas of bosons with re-
pulsive interactions, attracted to the center with poten-
tial ∼ −r−2. In that case, the MF predicts suppression
of the quantum collapse and creation of a ground state
which is missing in the single-particle formulation [61],
while the full many-body analysis demonstrates that the
same newly created state exists as a metastable one [62].

To summarize, we have showed that the dissociation
of the 1D matter-wave breather, initiated by the quench
from the fundamental soliton, is a purely quantum many-
body effect, as all the MF contributions to the dissoci-
ation vanish due to the integrability at the MF level.
This conclusion opens the way to observe truly quan-
tum many-body effects without leaving the MF range of
experimental parameters. We have evaluated the disso-
ciation time corresponding to typical experimental pa-
rameters for atomic solitons. The extrapolation of the
present results to a larger number of atoms is justified
[46] by the comparison with recent results produced by
truncated Wigner calculations in Ref. [63] (that work
has appeared after the submission of the first version of
the present one).
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