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Parafermionic zero modes are a novel set of excitations displaying non-Abelian statistics somewhat
richer than that of Majorana modes. These modes are predicted to occur when nearby fractional
quantum Hall edge states are gapped by an interposed superconductor. Despite substantial exper-
imental progress, we argue that the necessary crossed Andreev reflection in this arrangement is a
challenging milestone to reach. We propose a superconducting quantum dot array structure on a
fractional quantum Hall edge that can lead to parafermionic zero modes from coherent supercon-
ducting forward scattering on a quantum Hall edge. Such coherent forward scattering has already
been demonstrated in recent experiments. We show that for a spin-singlet superconductor inter-
acting with loops of spin unpolarized 2/3 fractional quantum edge, even an array size of order ten
should allow one to systematically tune into a parafermionic degeneracy.

Introduction.—Theoretical understanding and experi-
mental realization of non-Abelian anyons has attracted
considerable attention in the past few years. In ad-
dition to being of fundamental interest as a dramatic
manifestation of a topological phase, non-Abelian anyons
also have potential applications as building blocks for
topological quantum computers [1]. Majorana zero
modes (MZMs) [2–7] provide the simplest and exper-
imentally the most promising example of non-Abelian
anyons. So far, most of the effort in searching for non-
Abelian anyons has focused on MZMs. Following a se-
ries of theoretical proposals [8–11], suggestive experi-
mental evidence of MZMs has been observed in semi-
conductor/superconductor heterostructures [12–18]. De-
spite their fascinating properties, MZMs are non-Abelian
anyons of the Ising (Z2) type. Universal quantum com-
putation cannot be implemented using braiding of Z2

anyons alone. Therefore, searching for a computation-
ally richer set of anyons seems necessary.

Parafermionic zero modes (PZMs) [19–21] (also known
as fractional MZMs) provide an example of such compu-
tationally rich (still not universal) anyons. They can be
thought of as Zn generalizations of MZMs. Similar to
MZMs, Zn PZMs are associated with n fold degeneracy of
the ground state that is robust to all local perturbations.
Due to fundamental restrictions set on possible topolog-
ical phases in strictly one-dimensional systems[22, 23],
PZMs cannot exist in isolated one dimensional systems.
However, recently it was realized that boundaries of two-
dimensional systems can circumvent these restrictions.
It was explicitly shown that PZMs emerge at the one-
dimensional boundary of two counter-propagating frac-
tional quantum Hall (FQH) edges coupled with super-
conducting contacts [24–27]. These setups greatly re-
semble one canonical proposal used to realize MZMs[28],
with the role of topological insulator played by a pair
of opposite-chirality FQH states. All of existing propos-
als (involving superconductors) require two main ingredi-

ents, induced superconductivity via coupling FQH edge
state to a superconductor and crossed Andreev tunnel-
ing between two edges. The first requirement has al-
ready been achieved in experiments [29–31]. However,
the second requirement is likely to be difficult to achieve
experimentally due to disruption of FQHE states placed
adjacent to a superconductor. This is because strong
coupling to the superconductor is likely to change den-
sity in the surrounding 2D electron gas, pushing the
FQHE away from the superconductor. The amplitude
of quasiparticle tunneling between edges would then be
reduced by the increased distance and the Fermi wave-
vector in the intervening superconducting region. Exper-
imental evidence[31] also seems to suggest that observ-
able Crossed Andreev tunneling amplitude is much too
weak to generate a coherent gap. In addition, disorder
in the superconductor would likely randomize the super-
conducting backscattering, which is likely to destabilize
the topological phase as in the case of MZMs[32].
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FIG. 1: Top view of the system, comprised of a linear
array of superconductors coupled to loops of FQH edge
states, different loops are connected via quasiparticle
hopping

In this letter we propose a practical scheme to realize
Z3 PZMs from the spin unpolarized 2/3 fractional quan-
tum Hall state using superconducting contacts without
cross-Andreev tunneling, which can be realized in present
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experiments. Our system is comprised of a linear ar-
ray of FQH edge loops; each one of these loops is cou-
pled to a superconductor through proximity effect, and
separate loops are connected via quasiparticle tunneling.
Superconductors are separated from FQH bulk using a
barrier. Different superconductors are connected using
thin wires to ensure they have the same superconducting
phase. Strength of quasiparticle tunneling can be con-
trolled with a gate voltage. A top view of this setup
is shown in Fig. 1. We use a combination of analytical
and numerical methods to study this model and show
that for realistic values of parameters, at relatively small
chain lengths (order ten loops) this system can be tuned
to a topological phase hosting Z3 PZMs.

Model.—We begin by studying a single loop coupled
to a superconductor. Assuming SU(2) symmetry, the
effective Hamiltonian describing the charge part of ν =
2/3 FQH edge state is given by the following chiral boson
theory[33, 34],

Hedge =

∫ L

0

dx[
u

4πν
(∂xϕ(x))2 − umµ

2L
∂xϕ(x)] (1)

where L is length of the loop, u is mode velocity, mµ is
the gate controlled dimensionless chemical potential (as
opposed to actual chemical potential µ =

umµ
2L ) and ϕ(x)

is the chiral boson field that is defined in terms of charge
density operator as ρ = 1

2π∂xϕ(x). The ϕ(x) field obeys
the commutation relation [ϕ(x), ∂yϕ(y)] = 2iπνδ(x− y).
Using this relation we can write the charge 2/3 spin-
less quasiparticle creation operator as eiϕ(x) and charge
2 Cooper pair creation operator as e3iϕ(x). The neutral
mode, which does not couple to the SC and is expected
to be non-degenerate and gapped will be ignored in the
rest of this work. Charge 1/3 excitations that involve the
neutral mode are also gapped out. The edge Hamiltonian
Hedge can be diagonalized [35] by mode expanding ϕ(x)
as

ϕ(x) =
2πn̂νx

L
+ ϕ̂0+

Kmax∑
k=0

[
−i
√
ν

k
a†ke

2πikx/L + i

√
ν

k
ake
−2πikx/L

]
(2)

where ak, a
†
k are the kth momentum boson creation and

annihilation operator for k ∈ N, ϕ̂0, n̂ are zero mode
phase and number operators, respectively, and Kmax is
the momentum cutoff.

Now we can rewrite Eq.(1) as,

Hedge =
uπν

L

(
n̂2 −mµn̂+

2

ν
P̂
)

+ const (3)

where P̂ =
∑Kmax
k=0 kâ†kâk is the total momentum opera-

tor. When dimensionless chemical potential mµ is tuned
by gate voltage to integer values the spectrum is invari-
ant under changing n = m to n = −m+mµ. For odd mµ
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FIG. 2: Low-lying spectrum for “pseudo-point-like”
superconductivity as a function of ∆

L . Here mµ = 1,
Kmax = 4 and q is the fractional charge modulo three
q = mod(n, 3). All red circles are two fold degenerate,
blue circles are non-degenerate.

this translates into a two fold ground state degeneracy.
This degeneracy survives the addition of superconductiv-
ity and will play a crucial role later on.

The effect of superconductor on a single loop can be
modeled by,

Hsc =

∫ L

0

dx
∆(x)

L
e−

2πixmµ
L e3iϕ(x) + h.c (4)

describing tunneling of Cooper pairs to and from super-
conductor. Here ∆(x) corresponds to position-dependent

Cooper pair tunneling amplitude and e−
2πixmµ

L is the
phase factor taking into account the chemical potential
mismatch between the FQH and the (grounded) super-

conductor. Fourier transforming ∆(x) =
∑
k ∆(k)e

2πikx
L

and mode expanding ϕ(x) (as in Eq. (2)) allows us to
write the only nonzero matrix elements of Hsc,

〈n0 ± 3, {mk}|Hsc|n0, {nk}〉 =
∑
k

∆(k)δ(∆E±3k) (5)

× 〈n0 ± 3, {mk}|e±3iϕ(0)|n0, {nk}〉,

where ∆E = E(n0±3, {mk})−E(n0, {nk}) is the energy
difference between the initial and the final state, and E =
uπν
L (n2 − mµn + 3P ) is the bare edge energy of each

state in accordance with Eq. (3). Equation (5) implies
that special case of uniform superconductivity ∆(x) =
∆0 leads to the additional conserved quantity Hedge, as
[Hsc, Hedge] = 0. Though convenient, this symmetry is
not generic and is not used in this letter.

Inclusion of Hsc reduces conservation of fractional
charge n to conservation of q = mod(n, 3), which only
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takes three values q = 0, 1, 2. Using this restriction we
can divide the system into three independent charge sec-
tors with q = 0, 1, 2. For integer mµ, the n = 3m to
n = −3m + mµ symmetry of the non-superconducting
edge now translates into degeneracy of two of the charge
sectors, for example at mµ = 1 the two sectors q = 0, 1
will become degenerate.

Using Eq.(5) we can numerically calculate the spec-
trum of a single loop H = Hedge + Hsc. We set mµ = 1
and assume a “pseudo-point-like” superconductivity such
that ∆(k) = ∆ for |k| 6 K, where we have chosen
K = Kmax i.e. the momentum cutoff defined in Eq.(2)
(note that K and Kmax did not have to be equal). The
low-lying part of the spectrum is plotted in Fig. 2. This
plot shows that the ground state is separated from the
rest of the spectrum by a gap for a range of ∆. However,
ground state degeneracy (between q = 0, 1) remains two-
fold with q = 2 split.

Effective Hamiltonian.—In absence of superconductiv-
ity and for odd values of dimensionless chemical poten-
tial (mµ = 2n − 1), ground-state of system is twofold
degenerate and is separated from the excited states by
a gap for a range of ∆. The two ground states can be
labeled by fractional charge q = 0, 1. Therefore as long
as we choose ∆ in this range and restrict the ratio of
hopping amplitude to the energy gap t/∆E to be small,
we can apply a Schrieffer-Wolff transformation to ob-
tain an effective Hamiltonian defined in the Hilbert space
spanned by ground states of single loops. This emergent
Hilbert space has only two states per site (q = 0, 1) and
therefore can be thought of as a chain of spin 1/2 sites,
where states with spin up/down correspond to single loop
ground states with q = 1, 0.

To calculate the effective Hamiltonian, we start with
Hamiltonian describing quasiparticle hopping between
different loops,

Htunnel = t
∑
i

eiϕi(L/2)e−iϕi+1(0) +H.c. (6)

Note that eiϕi(x) is an anyonic operator and has nontriv-
ial commutation relation with other anyonic operators.
For different sites we can write,

eiϕi(x)eiϕj(x
′) = eiϕj(x

′)eiϕi(x)eiπνsgn(j−i). (7)

Using a generalized Jordan-Wigner string we can define
the new field variables ϕ̃(x),

eiϕi(x) = eiπν
∑
j<i ñjeiϕ̃i(x). (8)

Advantage of these new field variables is that they com-
mute trivially between different sites [eiϕ̃i(x), eiϕ̃j(x

′)] ∝
δi,j , and therefore act strictly on the local loop Hilbert
space. Now we can rewrite Htunnel as,

Htunnel = t
∑
i

eiϕ̃i(L/2)e−iπνñ0,ie−iϕ̃i+1(0) +H.c.. (9)

q=1→0	
  	
  q=1→0	
  	
   q=1→2
→0	
  

FIG. 3: σ−i−1σ
−
i σ
−
i+1 term as a second order process in

perturbation theory. q is the fractional charge modulo
three. Two fractional charge are tunneled to the middle
site, one from each neighbour

Chain
length

Ground
state energy

1st excited
state energy

2nd excited
state energy

3rd excited
state energy

10 -6.818 -6.696 -6.696 -6.149
40 -29.681 -29.677 -29.677 -29.384
100 -75.524 -75.524 -75.524 -75.267

TABLE I: DMRG calculation results for “pseudo
point-like” superconductivity(defined earlier) at t = 1,
∆/L = 0.046 and momentum cutoff Kmax = 4

To second order in perturbation theory we can write the
low energy effective Hamiltonian as,

Heff =PHtunnelP − PHtunnel
(1− P )

H0
HtunnelP (10)

+O(t3/∆E2)

where P is the single loop ground state projection op-
erator defined as P =

∑
i(|q = i〉〈q = i|), and H0 is

the single loop Hamiltonian (shifted to set ground state
energy to zero).

Putting everything together we get (Details in the sup-
plementary material),

Heff =
∑
i

[
(tα0e

iπ/3 − t2α1e
−2iπ/3)σ+

i σ
−
i+1 (11)

− t2e2iπ/3γσ+
i−1σ

−
i+1 − t

2βσzi σ
z
i+1

+ t2λσ+
i−1σ

+
i σ

+
i+1

]
+H.c.+O(t3/∆E2)

where σ’s are the usual Pauli matrices and α, β, γ, λ
are parameters calculated in the supplementary mate-
rial. Note that all terms in the Hamiltonian conserve
fractional charge (spin) modulo three and are also Z2

symmetric under σz → −σz , this Z2 symmetry can be
associated with the ϕ → −ϕ +

2πmµνx
L symmetry of the

original Hamiltonian. Note that presence of the term
t2λσ+

i−1σ
+
i σ

+
i+1 requires nonzero superconductivity, since

without ∆ fractional charge (spin) has to be conserved.
As seen in Fig. 3, this term, which arises at second order
in tunneling, requires Hsc so that q=3 may be converted
to q=0 by removal of a Cooper pair.

Analysis.—Without superconductivity (σz non-
conserving terms), the conservation of σz ensures a
gapless state with low-energy Luttinger liquid Hamil-
tonian where σz ∼ ∇φ. In this description, the
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superconducting term t2λσ+
i−1σ

+
i σ

+
i+1 is represented

as g cos(3θ), which converts the Luttinger liquid to a
Sine-Gordon model. For the correct choice of parameters
the superconductivity induced term g cos(3θ) becomes
perturbatively relevant [36] and gaps out the system into
a topological phase with a Z3 parafermionic degeneracy,
where each ground state corresponds to the phase θ
being locked at one of the three minima of the cos(3θ)
term[24–27]. To check whether this degeneracy occurs
in a our system (i.e. the Hamiltonian in Eq. (11))
with realistic values of the parameters, we numerically
study the Hamiltonian in Eq.(11) using the DMRG
method. DMRG calculations were performed using the
ITensor library[37]. Sample results of this calculation
are shown in Table. I. These results confirm existence
of a three-fold degeneracy for reasonable parameters.
The degeneracy is weakly split for small chain lengths
N ≈ 10 and is more pronounced at longer lengths, as
expected from a true topological degeneracy[38]. These
results are expected to insensitive to temperature since
the energy gap is of order of uπν/L, which for loop
lengths of order of several quasiparticle radiuses (Each
quasiparticle radius is of order of several magnetic
lengths) would be of the order of the FQH gap, which
is much larger than the temperature at which the FQH
state is observed.

We have repeated this calculation with Kmax = 3, 4, 5
(larger values are numerically hard to simulate) and
found that the results are qualitatively insensitive to the
exact value of Kmax. Moreover for a realistic system
Kmax can be approximated as inverse of loop length
in units of quasiparticle radius, which assuming loops
lengths of order of several quasiparticle radiuses, makes
are our calculation to fall within the correct physical
regime.

In a reality the value of mµ cannot be exactly set to an
odd integer value. Effect of this imperfect tuning is de-
scribed by h

∑
i σ

z
i , where h is the energy offset between

the two states caused by the chemical potential shift. In
the Luttinger liquid description this term can be rep-
resented by adding a ∇φ term to the the Sine-Gordon
model. Phase diagram of such Sine-Gordon model in an
external field is well studied[36] , basically showing that
the gapped phase persists as long as h is smaller than
the energy gap calculated without the chemical poten-
tial offset (in our case previously calculated using DMRG
method).

For experimental purposes, it’s also important to dis-
cuss the role of disorder. We emphasize that in principle
all topological phases of matter are robust to local per-
turbations that are small compared to the system gap
size. However, to be concrete we consider the effect of
random fluctuations in loop lengths, this effect is likely
to be significant in a real experiment. We have performed
numerical calculations on this system (Details in the Sup-
plementary Material), and found that our results are at

least robust to significant fluctuations in loops lengths of
order of ∆L

L ≈ 0.3.
An alternative interesting limit is that of “true” point-

like superconducting contacts (as opposed to pseudo
point like defined before), that is ∆(k) = ∆ ∀k. This
limit is particularly appealing, as in this case analytical
results may be obtained for large values of ∆. Following
the formalism developed in Ref.[39], we show (Details in
the Supplementary Material) that in large ∆ limit system
is described by set of decoupled harmonic oscillators, and
that in this limit all three fractional charge sectors be-
come degenerate. Analogous to the previous case (small
∆) as long as t/∆E is small, we can use Wolff trans-
formation to find an effective Hamiltonian. The effec-
tive Hilbert space of each site is three-dimensional (cor-
responding to three fractional charge sectors) and can be
though of as a three state clock model. In this limit, it’s
useful to define,

α2j−1 =
e−iϕj(0)

A(0)
;α2j =

e−iϕj(L/2)

A(L/2)
(12)

where A(x) = (
∏
i〈q = i|e−iϕ(x)|q = i + 1〉)1/3 is a

normalization factor. Within the effective Hilbert space
these operators are the usual parafermionic operators,
that is α3

j = 1 and αjαj′ = αj′αje
i 2π3 sgn(j′−j). Using

these variables and the Hamiltonians in Eqs.(6) and (10)
we arrive at,

Heff = t
∑
i

(A∗(L/2)A(0)α†2jα2j+1 +H.c.) +O(t2/∆E)

(13)

in this form presence of the parafermionic edge zero
modes (α1, α2N+1) is already manifest[20]. Note that in
contrast to Eq.(11), here the calculation has been done to
first order in t. Using the usual clock model variables [40]
we can write the Hamiltonian in a more familiar form,

Heff =
∑
i

(−Jσ†jσj+1 +H.c.) +O(t2/∆E) (14)

where J = tA∗(L/2)A(0)eiπ/3 and

σ =

1
ω
ω2

 , ω = e2πi/3 (15)

is the “clock” operator. In the large but finite ∆ regime,
three fold the ground state degeneracy of single loops
is not exact. We can take this energy difference into
account by adding a term h(τj + τ †j ) to Eq.(14) where h
is the energy difference of charge sectors q = 0, 1 with the
charge sector q = 2. Estimates for the value of h can be
found in the supplementary material. Putting everything
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together we have,

Heff =
∑
i

(−Jσ†jσj+1 +H.c.) + h(τi + τ †i ) +O(t2/∆E)

(16)

Note that σi is a non-local operator in the physical sys-
tem of interest. This is an important point as locality
prevents the introduction of a Hamiltonian term propor-
tional to σi. With this constraint and for small values
of h (h can be made arbitrarily small by choosing large
enough ∆) the Hamiltonian in Eq.(16) is well known to
be in a topological phase with three-fold degeneracy[19].

We would like to point out that it is possible to ex-
tend our proposal (array of quantum dots) to 1/3 bi-
layer quantum Hall systems without superconductivity,
where electron tunneling between quantum dots in dif-
ferent layers replaces the role of superconductivity. In
small tunneling limit, similar to the superconducting
case, the system is effectively described by a pair of
“Ising spin chains”. To first nonzero order in pertur-
bation theory the tunneling between the chains is de-
scribed by Ht = t

∑
j

∏
i σ

i
j−1σ

i
jσ
i
j+1 +H.c. where j, i are

the site/layer index. The bosonized form of this system
is identical to the previously discussed superconducting
system in the small ∆ regime plus a decoupled gapless
mode[41]. Equivalently in this case when the interlayer
tunneling becomes relevant, system is tuned to a phase
with three fold ground state degeneracy. This scenario is
similar to the idea of topological “genons”[42].

Finally, we remark that the Luttinger liquid descrip-
tion of the quantum Hall edge might be inaccurate for
loops that are only several quasiparticle radiuses in size.
However, the effective model in Eq.(10) also applies to a
chain of superconducting quantum dots in a FQH system
that can be gate tuned to have an almost two fold degen-
eracy between different fractional charges. In this sense,
the Luttinger liquid edges might be considered to be a
model for quantum dots in an FQH system and we do
not expect the details of the model of the edge to affect
our conclusions qualitatively.

Conclusion.— In this work we have considered a lin-
ear array of superconducting “quantum dot”-like holes
on a spin singlet 2/3 fractional quantum Hall sample and
showed that for both large and small values of induced
superconductivity ∆, this system can be tuned to a topo-
logical phase hosting Z3 PZMs. Unlike earlier propos-
als used to realize PZMs, our approach does not rely on
Andreev back-scattering between two fractional quantum
Hall edges. In addition, this system appears surprisingly
robust to disorder in a way similar to quantum dot based
proposals for MZMs discussed in Refs.[43, 44].We believe
this feature makes our proposal suitable for realization
in experiments using existing ingredients.

This work was supported by the NSF-DMR-1555135,
Microsoft and JQI-NSF-PFC.
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