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Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going beyond
the quasiparticle description. The Sachdev-Ye-Kitaev(SYK) model describes a 0 + 1D quantum cluster with
random all-to-all four-fermion interactions among N Fermion modes which becomes exactly solvable as N →
∞, exhibiting a zero-dimensional non-Fermi liquid with emergent conformal symmetry and complete absence
of quasi-particles. Here we study a lattice of complex-fermion SYK dots with random inter-site quadratic
hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a
heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature
Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in
temperature resistivity in the incoherent regime, and a Lorentz ratio L ≡ κρ

T varies between two universal values
as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated
metal.

Introduction - Strongly correlated metals comprise an en-
during puzzle at the heart of condensed matter physics. Com-
monly a highly renormalized heavy Fermi liquid occurs be-
low a small coherence energy scale, while at higher tem-
peratures a broad incoherent regime pertains in which quasi-
particle description fails[1–9]. Despite the ubiquity of this
phenomenology, strong correlations and quantum fluctuations
make it challenging to study. The exactly soluble SYK mod-
els, which systematize and extend early ideas of random in-
teraction models[10–13], provide a powerful framework to
study such physics. The most-studied SYK4 model, a 0 + 1D
quantum cluster of N Majorana fermion modes with random
all-to-all four-fermion interactions[14–22] has been general-
ized to SYKq models with q-fermion interactions. Subsequent
works[23, 24] extended the SYK model to higher spatial di-
mensions by coupling a lattice of SYK4 quantum clusters by
additional four-fermion “pair hopping” interactions. They ob-
tained electrical and thermal conductivities completely gov-
erned by diffusive modes and nearly temperature-independent
behavior owing to the identical scaling of the inter-dot and
intra-dot couplings.

Here, we take one step closer to realism by considering a
lattice of complex-fermion SYK clusters with SYK4 intra-
cluster interaction of strength U0 and random inter-cluster
“SYK2” two-fermion hopping of strength t0[25–30]. Un-
like the previous higher dimensional SYK models where lo-
cal quantum criticality governs the entire low temperature
physics, here as we vary the temperature, two distinctive
metallic behaviors appear, resembling the previously men-
tioned heavy fermion systems. We assume t0 � U0, which
implies strong interactions, and focus on the correlated regime

T � U0. We show the system has a coherence temperature
scale Ec ≡ t2

0/U0[25, 31, 32] between a heavy Fermi liquid
and an incoherent metal. For T < Ec, the SYK2 induces a
Fermi liquid, which is however highly renormalized by the
strong interactions. For T > Ec, the system enters the incoher-
ent metal regime and the resistivity ρ depends linearly on tem-
perature. These results are strikingly similar to those of Par-
collet and Georges[33], who studied a variant SYK model ob-
tained in a double limit of infinite dimension and large N. Our
model is simpler, and does not require infinite dimensions. We
also obtain further results on the thermal conductivity κ, en-
tropy density and Lorentz ratio[34, 35] in this crossover. This
work bridges traditional Fermi liquid theory and the hydrody-
namical description of an incoherent metallic system.

SYK model and Imaginary-time formulation - We consider
a d-dimensional array of quantum dots, each with N species
of fermions labeled by i, j, k · · · ,

H =
∑

x

∑
i< j,k<l

Ui jkl,xc†ixc†jxckxclx +
∑
〈xx′〉

∑
i, j

ti j,xx′c
†

i,xc j,x′ (1)

where Ui jkl,x = U∗kli j,x and ti j,xx′ = t∗ji,x′x are random zero mean
complex variables drawn from Gaussian distribution whose
variances |Ui jkl,x|

2 = 2U2
0/N

3 and |ti j,x,x′ |
2 = t2

0/N.
In the imaginary time formalism, one studies the partition

function Z = Tr e−β(H−µN), with N =
∑

i,x c†i,xci,x, written as
a path integral over Grassman fields cixτ, c̄ixτ. Owing to the
self-averaging established for the SYK model at large N, it is
sufficient to study Z̄ =

∫
[dc̄][dc]e−S c , with (repeated species

indices are summed over)

S c =
∑

x

∫ β

0
dτ c̄ixτ(∂τ − µ)cixτ −

∫ β

0
dτ1dτ2

[∑
x

U2
0

4N3 c̄ixτ1 c̄ jxτ1 ckxτ1 clxτ1 c̄lxτ2 c̄kxτ2 c jxτ2 cixτ2 +
∑
〈xx′〉

t2
0

N
c̄ixτ1 c jx′τ1 c̄ jx′τ2 cixτ2

]
. (2)
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The basic features can be determined by a simple power-
counting. Considering for simplicity µ = 0, starting from
t0 = 0, the U2

0 term is invariant under τ→ bτ and c→ b−1/4c,
c̄ → b−1/4c̄, fixing the scaling dimension ∆ = 1/4 of the
fermion fields. Under this scaling c̄∂τc term is irrelevant.
Yet upon addition of two-fermion coupling, under rescaling,
t2
0 → bt2

0, so two-fermion coupling is a relevant perturba-
tion. By standard reasoning, this implies a cross-over from
the SYK4-like model to another regime at the energy scale
where the hopping perturbation becomes dominant, which is
Ec = t2

0/U0. Assuming no intermediate fixed points, we ex-
pect the renormalization flow is to the SYK2 regime, i.e. to
a Fermi liquid. Indeed keeping the SYK2 term invariant fixes

∆ = 1/2, and U2
0 → b−1U2

0 is irrelevant. Since the SYK2
Hamiltonian (i.e.,U0 = 0) is quadratic, the disordered free
fermion model supports quasi-particles and defines a Fermi
liquid limit. For t0 � U0, Ec defines a crossover scale be-
tween SYK4-like non-Fermi liquid and the low temperature
Fermi liquid. The crossover behavior studied below will jus-
tify our previous assumption of the absence of intermediate
fixed points between the SYK2 and SYK4 regimes.

At the level of thermodynamics, this crossover can be rig-
orously established using imaginary time formalism. Intro-
ducing a composite field Gx(τ, τ′) = −1

N
∑

i cixτc̄ixτ′ and a La-
grange multiplier Σx(τ, τ′) enforcing the previous identity, one
obtains Z̄ =

∫
[dG][dΣ]e−NS , with the action

S = −
∑

x

ln det
[
(∂τ − µ)δ(τ1 − τ2) + Σx(τ1, τ2)

]
+

∫ β

0
dτ1dτ2

(
−

∑
x

U2
0

4
Gx(τ1, τ2)2Gx(τ2, τ1)2 + Σx(τ1, τ2)Gx(τ2, τ1)


+t2

0

∑
〈xx′〉

Gx′ (τ1, τ2)Gx(τ2, τ1)
)
. (3)

The large N limit is controlled by the saddle point conditions
δS/δG = δS/δΣ = 0, satisfied by Gx(τ, τ′) = G(τ − τ′),
Σx(τ, τ′) = Σ4(τ − τ′) + zt2

0G(τ − τ′) (z is the coordination
number of the lattice of SYK dots), which obey

G(iωn)−1 = iωn + µ − Σ4(iωn) − zt2
0G(iωn),

Σ4(τ) = −U2
0G(τ)2G(−τ), (4)

where ωn = (2n+1)π/β is the Matsubara frequency. We solve
them numerically and re-insert into (3) to obtain the free en-
ergy, hence the full thermodynamics[24, 36, 37]. Consider
the entropy S. A key feature of the SYK4 solution is an ex-
tensive (∝ N) entropy[17] in the T → 0 limit, an extreme
non-Fermi liquid feature. This entropy must be removed over
the narrow temperature window set by the the coherence en-
ergy Ec. Consequently, we expect that S/N = S(T/Ec) for
T, Ec � U0, where the universal function S(T = 0) = 0 in-
dicating no zero temperature entropy in a Fermi liquid, and
S(T → ∞) = 0.4648 · · · , recovering the zero temperature
entropy of the SYK4 model. The universal scaling collapse
is confirmed by numerical solution, as shown in Fig. 1. This
implies also that the specific heat NC = (T/Ec)S′(T/Ec), and
hence the low-temperature Sommerfeld coefficient

γ ≡ lim
T→0

C
T

=
S′(0)

Ec
(5)

is large due to the smallness of Ec. Specifically, compared
with the Sommerfeld coefficient in the weak interaction limit
t0 � U0, which is of order t−1

0 , there is an “effective mass
enhancement” of m∗/m ∼ t0/Ec ∼ U0/t0. Thus the low tem-
perature state is a heavy Fermi liquid.

To establish that the low temperature state is truly a strongly
renormalized Fermi liquid with large Fermi liquid parame-

S(T ! 1)

FIG. 1. The entropy and specific heat(inset) collapse to universal
functions of T

Ec
, given t0,T � U0(z = 2). C → S′(0)T/Ec as

T/Ec → 0. Solid curves are guides to the eyes.

ters, we compute the compressibility, NK = ∂N/∂µ|T . Be-
cause the compressibility has a smooth low temperature limit
in SYK4 model, we expect that K is only weakly perturbed
by small t0. For t0 � U0, we indeed have K ≈ K|t0=0 =

c/U0 with the constant c ≈ 1.04 regardless of T/Ec. For
free fermions, the compressibility and Sommerfeld coefficient
are both proportional to the single-particle density of states
(DOS), and in particular γ/K = π2/3 for free fermions. Here
we find γ/K = (S′(0)/c)U0/Ec ∼ (U0/t0)2 � 1. This can
only be reconciled with Fermi liquid theory by introducing a
large Landau interaction parameter. In Fermi liquid theory,
one introduces the interaction fab via δεa =

∑
b fabδnb, where

a, b label quasiparticle states. For a diffusive disordered Fermi
liquid, we take fab = F/g(0), where g(0) is the quasi-particle
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DOS, and F is the dimensionless Fermi liquid interaction pa-
rameter. The standard result of Fermi liquid theory[37], is
that γ is unaffected by F but K is renormalized, leading to
γ/K = π2

3 (1 + F). We see that F ∼ (U0/t0)2 � 1, so that the
Fermi liquid is extremely strongly interacting. Comparing to
the effective mass, one has F ∼ (m∗/m)2.

Real time formulation- While imaginary time formula-
tion is adequate for thermodynamics, it encounters diffi-
culties in addressing transport due to difficulty of analytic
continuation to zero real frequency in the presence of the
emergent low energy scale Ec. Instead we reformulate the

problem in real time using Keldysh path integral. The
Keldysh formalism calculates the partition function Z =

Tr[ρU]
Tr[ρ]

with ρ = e−β(H−µN) and U the identity evolution operator
U = e−i(H−µN)(t0−t f )e−i(H−µN)(t f−t0) describing evolving for-
ward from t0 → t f (with Keldysh label +) and backward
(Keldysh label −) identically. Paralleling the imaginary-time
development, we introduce collective variables Gx,ss′ (t, t′) =
−i
N

∑
i cs

ixtc̄
s′
ixt′ and Σx,ss′ with s, s′ = ± labeling Keldysh con-

tour, and integrate out the fermionic fields to obtain Z̄ =∫
[dG][dΣ]eiNS K [37], with the Keldysh action

iS K =
∑

x

ln det[σz(i∂t + µ)δ(t − t′) − Σx(t, t′)] −
∑
ss′

∫ t f

t0
dtdt′

[∑
x

U2
0

4
ss′Gx,ss′ (t, t′)2Gx,s′ s(t′, t)2 −

∑
x

Σx,ss′ (t, t′)Gx,s′ s(t′, t)

+
∑
〈x′x〉

t2
0 ss′Gx,ss′ (t, t′)Gx′,s′ s(t′, t)

]
(6)

where Σx in the determinant is to be understood as the ma-
trix [Σx,ss′ ] and σz acts in Keldysh space. We obtain the nu-
merical solution to the Green’s functions[37] by solving for
the saddle point of S K . We plot in Fig. 2 the spectral weight
A(ω) ≡ −1

π
Im GR(ω) (GR is retarded Green function) at fixed

U0/T = 104 for Ec/T = 0, 0.09, 1, 9, which illustrates the
crossover between the SYK4 and Fermi liquid regimes. For
ω � Ec, we observe the quantum critical form of the SYK4
model, which displays ω/T scaling, evident in the figure from
the collapse onto a single curve at large ω/T . At low fre-
quency, the SYK4 model has A(ω � T ) ∼ 1/

√
U0T , whose

divergence as T → 0 is cut-off when T . Ec. This is seen
in the reduction of the peak height in Fig. 2,

√
U0T A(ω = 0),

with increasing Ec/T . On a larger frequency scale (inset), the
narrow “coherence peak”, associated with the small spectral
weight of heavy quasiparticles, is clearly visible.

We now turn to transport, and for simplicity focus on
particle-hole symmetric case hereafter. The strategy is to ob-
tain electrical and heat conductivities from the fluctuations of
charge and energy, respectively, using the Einstein relations.
We first consider charge, and study the low-energy U(1) phase
fluctuation ϕ(x, t), which is the conjugate variable to particle
number density N(x, t), around the saddle point of the action
S K . Allowing for phase fluctuations around the saddle point
solution amounts to taking

Gx,ss′ (t, t′)→ Gx,ss′ (t − t′)e−i(ϕs(x,t)−ϕs′ (x,t′))

Σx,ss′ (t, t′)→ Σx,ss′ (t − t′)e−i(ϕs(x,t)−ϕs′ (x,t′)), (7)

where Gx,ss′ (t − t′) and Σx,ss′ (t − t′) are the saddle point solu-
tions. Expanding (6) to quadratic order in ϕs, S K = S sp

K + S ϕ,
yields the lowest order effective action for the U(1) fluctu-
ations. This is most conveniently expressed in terms of the
“classical” and “quantum” components of the phase fluctua-

tions, defined as ϕc/q = (ϕ+ ± ϕ−)/2 and in Fourier space:

iS ϕ =
∑

p

∫ t f

t0
dtdt′

[
Λ1(t − t′)∂tϕc,p(t)∂tϕq,−p(t′)

−υ(p)Λ2(t − t′)ϕc,p(t)ϕq,−p(t′)
]
+ · · · . (8)

Here the first term arises from the ln det[·] and the second from
the hopping (t2

0) term in (6). The function υ(p) encodes the
band structure for the two-fermion hopping term, dependent
on lattice details, and the ellipses represent O(ϕ2

q) terms which
do not contribute to the density correlations (and are omitted
hereafter –see [37] for reasons). The coefficients Λ1(t) and
Λ2(t) are expressed in terms of saddle point Green’s functions
in [37]. We remark here that any further approximations, e.g.,
conformal invariance, are not assumed to arrive at action (8),
and hence this derivation applies in all regimes.

In the low frequency limit, the Fourier transforms of
Λ1(t),Λ2(t) behave as Λ1(ω) ≈ −2iK and Λ2(ω) ≈ 2KDϕω,
which defines the positive real parameters K and Dϕ. At small
momentum, for an isotropic Bravais lattice, υ(p) = p2 (with
unit lattice spacing), and the phase action becomes

iS ϕ = −2K
∑

p

∫ +∞

−∞

dωϕc,ω(iω2 − Dϕp2ω)ϕq,−ω. (9)

The density-density correlator is expressed as

DRn(x,t; x′,t′) ≡ iθ(t − t′)〈[N(x,t),N(x′,t′)]〉

=
i
2
〈Nc(x,t)Nq(x′,t′)〉, (10)

where Ns ≡
sNδS ϕ

δϕ̇s
, Nc/q = N+ ± N−(keeping momentum-

independent components- See [37]). Adding a contact term
to ensure that limp→0 DRn(p, ω , 0) = 0[38], the action (9)
yields the diffusive form [39]

DRn(p, ω) =
−iNKω

iω − Dϕp2 + NK =
−NKDϕp2

iω − Dϕp2 . (11)
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FIG. 2. The spectral weight A(ω) at fixed U0/T = 104, µ = 0, z = 2
for Ec/T = 0, 0.09, 1, 9, corresponding a crossover from SYK4 limit
to the “heavy Fermi liquid” regime. Inset shows the comparison of
green’s function for T/Ec = 9 with free fermion limit result.

From this we identify NK and Dϕ as the compressibility and
charge diffusion constant, respectively. The electric conduc-
tivity is given by Einstein relation σ ≡ 1/ρ = NKDϕ, or,
restoring all units,σ = NKDϕ

e2

~
a2−d(a is lattice spacing).

Note the proportionality to N: in the standard non-linear
sigma model formulation, the dimensionless conductance is
large, suppressing localization effects. This occurs because
both U and t interactions scatter between all orbitals, destroy-
ing interference from closed loops.

The analysis of energy transport proceeds similarly. Since
energy is the generator of time translations, one considers the
time-reparametrization (TRP) modes induced by ts → ts+εs(t)
and defines εc/q = 1

2 (ε+ ± ε−). The effective action for TRP
modes to the lowest-order in p, ω reads [37]

iS ε =
∑

p

∫ +∞

−∞

dω εc,ω(2iγω2T 2 − p2Λ3(ω))εq,−ω + · · · , (12)

where the ellipses has the same meaning as in (9). At low
frequency, the correlation function integral, given in [37], be-
haves as Λ3(ω) ≈ 2γDεT 2ω, which defines the energy diffu-
sion constant Dε . This identification is seen from the correla-
tor for energy density modes εc/q ≡

iNδS ε

δε̇q/c
,

DRε(p, ω) =
i
2
〈εcεq〉p,ω =

−NT 2γDε p2

iω − Dε p2 , (13)

where we add a contact term to ensure conservation of energy
at p = 0. The thermal conductivity reads κ = NTγDε (kB = 1)
–like σ, is O(N).

Scaling collapse, Kadowaki-Woods and Lorentz ra-
tios – Electric/thermal conductivities are obtained from
limω→0 Λ2/3(ω)/ω, expressed as integrals of real-time corre-
lation functions, and can be evaluated numerically for any
T, t0,U0. Introducing generalized resistivities, ρϕ = ρ, ρε =

T/κ, we find remarkably that for t0,T � U0, they collapse to

(a)

(b)

FIG. 3. (a): For t0,T � U0, ρϕ/ε “collapse” to Rϕ/ε( T
Ec

)/N. (b): The

Lorentz ratio κρ

T reaches two constants π2

3 ,
π2

8 , in the two regimes.
The solid curves are guides to the eyes.

universal functions of one variable,

ρζ(t0,T � U0) =
1
N

Rζ( T
Ec

) ζ ∈ {ϕ, ε}, (14)

where Rϕ(T ), Rε(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (14), we see the
low temperature resistivity obeys the usual Fermi liquid form

ρζ(T � Ec) ≈ ρζ(0) + AζT 2, (15)

where the temperature coefficient of resistivity Aζ =
R′′ζ (0)

2NE2
c

is
large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, Aϕ/(Nγ)2, is approximately system-
independent for a wide range of correlated materials[40, 41].
We find here Aϕ

(Nγ)2 =
R′′ϕ (0)

2[S′(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary
linearly with temperature: Rζ(T ) ∼ cζ T . We analytically
obtain cϕ = 2

√
π

and cε = 16
π5/2 [37], implying that the Lorenz
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number, characterizing the Wiedemann-Franz law, takes the
unusual value L = κ

σT →
π2

8 for Ec � T � U0. More gener-
ally, the scaling form (14) implies that L is a universal func-
tion of T/Ec, verified numerically as shown in Fig. 3b. The
Lorenz number increases with lower temperature, saturating
at T � Ec to the Fermi liquid value π2/3.

Conclusion – We have shown that the SYK model pro-
vides a soluble source of strong local interactions which,
when coupled into a higher-dimensional lattice by ordinary
but random electron hopping, reproduces a remarkable num-
ber of features of strongly correlated metals, including heavy
quasiparticles with small spectral weight, a largely system-
independent Kadowaki-Woods ratio, T -linear high tempera-
ture resistivity, and an anomalous Lorenz number in the inco-
herent regime. The remarkable success of this simple soluble
model suggests exciting prospects for extending the treatment
to more realistic systems, and to shed light on the physical
content of various numerical results from dynamical mean
field theory[42], which shares significant mathematical sim-
ilarity to basic equations of this work.
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