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We consider the contribution to the density of vibrational states and the distribution of energy
barrier heights of incipient instabilities in a glass modeled by a jammed packing of spheres. On
approaching an instability, the frequency of a normal mode and the height of the energy barrier to
cross into a new ground state both vanish. These instabilities produce a contribution to the density
of vibrational states that scales as ω3 at low frequencies ω, and a contribution to the distribution
of energy barriers ∆H that scales as ∆H−1/3 at low barrier heights.

Disordered solids inhabit an extremely high-
dimensional rugged energy landscape with a vast
number of metastable minima [1, 2]. Dealing with such a
complex topography poses challenges for understanding
how the system moves among metastable basins as a re-
sult of thermal excitations or external perturbations such
as compression or shear. Here we focus on instabilities
induced in zero-temperature (T = 0) systems by applied
compression or shear as a first step in understanding
how a disordered solid traverses its landscape.

When a system in a given energy basin becomes un-
stable at T = 0, a potential-energy barrier must vanish
along some direction in configurational space so that the
curvature vanishes in this direction implying a mode of
vibration with frequency ω = 0 [3–7]. As a result, low-
frequency quasilocalized modes have particularly low en-
ergy barriers [8–11] and contain predictive information
about incipient instabilities [12] that are spatially local-
ized, and can be identified via anharmonic analysis of the
energy landscape [13–16] as well as by purely structural
measures [17].

Zero-temperature jammed sphere packings provide
special insight into this physics. At the jamming tran-
sition, the density of states, D(ω), is nearly constant
down to arbitrarily low ω [18, 19] and the removal of
a single bond leads to the creation of a zero-frequency
mode. At densities above the transition (i.e., at non-zero
pressure), the packings are susceptible to small (but fi-
nite) perturbations that push the system into new energy
minima [10, 20–24]. At low temperatures, one expects
the lowest energy barriers to control how the system ex-
plores its landscape; the study of instabilities at T = 0
thus provides insight into behavior beyond the harmonic
approximation.

In this paper, we study jammed packings in three
dimensions and calculate D(ω) and the distribution,
PH(∆H), of energy barriers ∆H corresponding to the
most vulnerable directions in the energy landscape for
encountering an instability. These distribution functions

depend on the distance to the jamming transition. The
contribution of incipient instabilities to D(ω) scales as
ω3 for both compression and shear. The number of com-

pression instabilities per strain scales with system size,
N , in such a way that their contribution to D(ω) van-
ishes in the thermodynamic limit. However, the number
of shear instabilities per strain has a stronger dependence
on N , consistent with earlier results [25]. This leads to
a contribution to D(ω) that survives in the thermody-
namic limit. We also find that the distribution of energy
barriers corresponding to incipient instabilities varies as
PH(∆H) ∝ ∆H−1/3 so that in the thermodynamic limit
the system is marginally stable. By marginal stability,
we mean that an infinitesimal perturbation can push the
system over an energy barrier into a new ground state.
Our results lead to a refined understanding of marginal
stability in jammed packings.
Fold instability: We first review the expected scaling of

the lowest vibrational mode frequency and barrier height
as the system is compressed or sheared towards the stress
τi at which the instability occurs. For compression, τ is
the pressure p; for shear, τ is the shear stress Σ. We
control τ , so the relevant landscape is the enthalpy land-
scape. The enthalpy of a system is H = U +pV for com-
pression, and its counterpart is H = U − ΣγV for shear
[26], where U , V , and γ are the potential energy, volume,
and shear strain, respectively. Consider H(x) along the
“reaction coordinate” x in configurational space. Assume
that the saddle point is at x = 0 when τ = τi, as shown
in Fig. 1(a). There is no linear or quadratic term in x
since the system is unstable at τi and the curvature (or
the square of the mode frequency) must vanish. H must
therefore generically be cubic in x. We now retreat from
the instability, so that τ < τi. The lowest non-vanishing
coupling between δτ ≡ τi − τ and x is generically linear:

H = −1

3
a3x

3 + cxδτ. (1)

Here we assume that a3 > 0, so that at δτ = 0 (at the
instability) the system is unstable towards a minimum
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that lies at x > 0. The linear term shifts the minimum
to x0 = −

√

cδτ/a3 (c > 0), as shown in Fig. 1(a). Ex-
panding H around x = x0 in Eq. (1), we find

H =
2

3
a3x

3
0−a3x0(x−x0)

2− 1

3
a3(x−x0)

3+O[(x−x0)
4].

(2)
Therefore ω2

L = −2a3x0 = 2
√
ca3δτ , where ωL, the fre-

quency of the mode associated with the instability, is

ωL = (4ca3)
1/4(δτ)1/4. (3)

This typical scaling of a fold instability [27] has long been
observed in studies of soft modes in glassy systems [3–6].
The energy-barrier height scales as

∆H =
4

3

c3/2

a
1/2
3

(δτ)3/2. (4)

Simulations: We confirm this scaling using numer-
ical simulations of three-dimensional systems of N ∈
[250, 4000] frictionless spheres. We consider jammed
packings with a Hertzian interaction potential [28] be-
tween particles i and j:

U(rij) =
2ǫ

5

(

1− rij
σij

)5/2

Θ

(

1− rij
σij

)

, (5)

where rij and σij are the separation between particles i
and j and sum of their radii respectively, ǫ is the charac-
teristic energy, and Θ(x) is the Heaviside step function.
Periodic boundary conditions are applied in all directions
in the absence of shear; in the case of shear, we use Lees-
Edwards boundary conditions [29]. We study a 50:50
mixture of particles with diameters σ and σL = 1.4σ,
respectively. All particles have the same ǫ and mass m.
The units of length, mass, and energy are σ, m, and ǫ.
The frequency has units

√

ǫ/mσ2.
By rapidly quenching ideal-gas states to T = 0 using a

fast inertial relaxation engine algorithm [30], we minimize
the enthalpy at fixed pressure to obtain mechanically sta-
ble disordered solids. For each system size, we generate
5000 distinct states at the desired pressure p. To study
compression instabilities, we then compress each state by
increasing p while minimizing the enthalpy, until there is
an abrupt change of volume or packing fraction corre-
sponding to the first instability for that initial state. To
study shear instabilities, we apply shear stress Σ in the
analogous quasistatic fashion and minimize the enthalpy,
until there is an abrupt change of the shear strain γ. To
calculate the vibration modes, we diagonalize the Hes-
sian matrix corresponding to the appropriate generalized
free energy using ARPACK [31].
Figures 1(b)-(d) show examples of the approach to a

compression and a shear instability at pi and Σi, respec-
tively [32]. The packing fraction φ or shear strain γ is
shown versus p or Σ in Fig. 1(b). At p = pi or Σ = Σi

(δτ = 0), the bulk or shear modulus vanishes [33, 34].
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FIG. 1: (a) Schematic plot of the enthalpy landscape H along
the reaction coordinate x at the stress corresponding to the
instability, τi (solid), and at a stress below the instability,
τ < τi (dot-dashed), where the minimum is shifted to x0.
(b) Examples of the response of packing fraction φ and shear
strain γ to the increase of stress τ upon approaching the com-
pression (circles) and shear (squares) instabilities at φi and
γi, where δτ ≡ τi−τ . The lines are guides for the eye. (c)-(d)
Frequency ωL and enthalpy barrier height ∆H for the mode
associated with the instability as a function of δτ for com-
pression (circles) and shear (squares). The lines in (c) and

(d) indicate the expected power law scalings ωL ∼ δτ 1/4 and

∆H ∼ δτ 3/2, respectively.

The frequency of the mode associated with the insta-
bility, ωL, is shown in Fig. 1(c) as we approach the insta-
bility. As expected, ωL ∼ δτ1/4 for both compression and
shear. In addition, Fig. 1(d) shows that the height of the
enthalpy barrier vanishes on approaching the instability
as ∆H ∼ δτ3/2, as expected.

Distribution functions: The values of the distance to
the nearest instability, δτ and the variables c and a3 de-
fined in Eq. (1), vary from one enthalpy minimum to
another, and can also depend on whether the instabili-
ties are due to compression or shear. For an ensemble of
initial enthalpy minima, we characterize the ensembles
of compression and shear instabilities in terms of their
respective distributions: Pτ (δτ) for the distance to the
nearest instability; Pτc(c) for the coupling constant c;
and Pτa(a3) for the cubic coefficient a3.

Figure 2(a) shows that Pτ (δτ) is approximately con-
stant with increasing δτ until it falls off at δτy for both
compression and shear. Because we calculate only the
distance from τ to the first instability (at τi), δτy corre-
sponds to the yield stress and is comparable to the stress
interval between instabilities. The distributions for dif-
ferent system sizes collapse when δτ is scaled by Nα

N

with α
N
= 0.33±0.05 for compression and 0.65±0.06 for

shear. This implies that δτy ∝ N−α
N . The same scaling

of the distance between shear instabilities has been ob-
served in several models with decaying power-law inter-
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actions, including Lennard-Jones systems [5, 25, 35, 36].
It is associated with an exponent θe > 0 characterizing
the distribution of yield stresses as well as the existence of
avalanches [37, 38], such that δΣy ∝ N−1/(θe+1). Sublin-
ear scalings in 1/N are also seen in calculations of energy
barriers in mean-field spin glasses [39, 40], where this de-
crease may be associated with the fractal nature of the
energy landscape − a feature also predicted for jammed
packings in infinite dimensions [41].

Figure 2(b) shows how Pτ (δτ) depends on the initial
pressure p: δτy ∝ pαp with α

p
= 0.73± 0.03 for com-

pression and 1.08±0.05 for shear. As expected, the yield
stress vanishes as the jamming transition is approached.

Figure 2(c) shows that the distribution of c is indepen-
dent of N and is fairly innocuous with a peak at c ≈ 0.16
for compression and c ≈ 1.6 for shear, when p = 10−3.
Figure 2(d) shows that the shape of the c distribution
does not change appreciably with pressure. We find
that the peak position cmax and amplitude Pτc,max are
(0.10, 5.15), (0.16, 3.92) and (0.20, 3.49) for compression
and (1.78, 0.31), (1.55, 0.34), and (1.54, 0.38) for shear,
at pressures p = 10−4, 10−3 and 10−2, respectively.

The distributions of cubic coefficient, Pτa(a3), are
within numerical error for compression and shear, as
shown in Figs. 2(e) and 2(f). For both cases, there is a
broad, approximately power-law, distribution of a3 that
is cut off at low values of a3. As N increases, the mini-
mum shifts to lower a3 as N

−0.3±0.1 for both compression
and shear. As the pressure is reduced towards the jam-
ming transition, the distribution appears to approach a
pure power law of P (a3) ∼ a−1.0

3 at small a3, as the peak
value vanishes approximately as p0.75±0.05.

Density of states and energy barriers: We now con-
sider the contribution of compression and shear instabil-
ities to the density of states, D(ω), and the distribution
of energy barriers, PH(∆H), at a given pressure p and
at Σ = 0. An incipient instability at τi will contribute
a mode at a frequency given by Eq. (3) and a barrier
height given by Eq. (4). The contribution of instabil-
ities to D(ω) or to PH(∆H) is therefore the sum over
the contributions of all of the incipient instabilities. The
number of compression instabilities in a given pressure
interval is Pp ∝ 1/δpy ∼ N0.33p−0.73. Similarly, the
number of shear instabilities in a given shear-stress in-
terval is PΣ ∝ 1/δΣy ∼ N0.65p−1.08. The contribution of
either compression or shear instabilities to the normal-
ized density of states is

D(ω) =
Pτ

3N

∫ ∞

τ

dτi

∫ ∞

0

da3Pτa(a3)

∫ ∞

0

dcPτc(c)δ(ω −
√
2(ca3δτ)

1/4), (6)

where the lower limit of the first integral is τ = p for
compression instabilities and τ = 0 for shear instabilities.
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FIG. 2: (Left column) System-size and (Right column) pres-
sure dependence of the distributions of δτ , c and a3 char-
acterizing compression and shear instabilities. For the left
column, system sizes are N = 250, 1000, and 4000 (circles,
squares, and diamonds for compression; upward, downward,
and leftward triangles for shear), all at p = 10−3. For the
right column, pressures are p = 10−4, 10−3, and 10−2 (circles,
squares, and diamonds for compression; upward, downward,
and leftward triangles for shear), all at N = 1000. Lines are
guides for the eye. The dot-dashed line in (f) has a slope of
−1.

The contribution to the distribution of energy barriers is

PH(∆H) = Pτ

∫ ∞

τ

dτi

∫ ∞

0

da3Pτa(a3)

∫ ∞

0

dcPτc(c)

δ(∆H − 4

3
c3/2a

−1/2
3 (δτ)3/2). (7)

In the low-frequency limit, Eq. (6) leads to

D(ω) =
Pτ 〈a−1

3 〉τ 〈c−1〉τ
3N

ω3, (8)

where 〈a−1
3 〉τ =

∫∞

0 da3Pτa(a3)a
−1
3 and 〈c−1〉τ =

∫∞

0
dcPτc(c)c

−1.
Equation (8) shows that both compression and shear

instabilities give rise to an ω3 contribution to D(ω). The
scalings in Fig. 2 show that the contribution to D(ω)
vanishes as N−0.37±0.15as N → ∞ for compression insta-
bilities, so that they do not contribute to the density of
normal modes of vibration in the thermodynamic limit.
For shear instabilities, there is a different scaling of PΣ

than there is for Pp: PΣ ∼ N0.65±0.06. (However, the
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scaling of 〈a−1
3 〉Σ is the same within our numerical un-

certainty as that for 〈a−1
3 〉p). From Eq. (8) we see that

for shear instabilities, the N -dependence of the contribu-
tion to D(ω) scales as N−0.05±0.16, so that there is no
N -dependence within measurement error. This implies
that the contribution of shear instabilities to the density
of states survives in the thermodynamic limit.
For low energy barriers, we find from Eq. (7)

PH(∆H) = (
1

6
)1/3Pτ 〈a1/33 〉τ 〈c−1〉τ∆H−1/3, (9)

for both compression and shear instabilities. Note that
if Pτa(a3) ∼ 1/a3 at large a3, as suggested by the dot-

dashed line in Fig. 2(f), then 〈a1/33 〉τ diverges at the high
a3 (low energy barrier) end. A closer look at Fig. 2(f),
however, suggests that Pτa(a3) bends down more rapidly

than 1/a3 at high a3. We therefore assume that 〈a1/33 〉τ
is finite. In that case, PH increases with Pp〈a1/33 〉p ∝
p−0.48±0.05 for compression instabilities and PΣ〈a1/33 〉Σ ∝
p−0.83±0.07 for shear instabilities.
Discussion and conclusions: Sphere packings with soft,

finite-ranged repulsions are marginally stable to extended
instabilities at the jamming transition at zero pressure,
where there are the minimum number of contacts needed
for mechanical stability [18, 20]. As the system is com-
pressed above the transition, the connectivity increases,
but at a pressure p, the system is still close to the limit of
stability with respect to compression – it is just slightly
above the minimum connectivity needed to support that
pressure against extended instabilities [10, 24]. One main
conclusion of our analysis is that a finite-sized jammed
solid is nearly marginally stable with respect to compres-
sion or shear and becomes marginally stable in the ther-
modynamic limit. In that limit an infinitesimal increase
in either stress will lead to an instability and the van-
ishing of a mode frequency. These instabilities are only
a subset of all possible localized instabilities that can be
triggered by applied stresses. Simulations have demon-
strated that low-frequency, localized, anharmonic modes
in jammed systems can produce echo phenomena [42].
The low-frequency modes arising from these instabilities
might provide a source for the phonon echoes observed
in experiments but which have previously been ascribed
to quantum-mechanical two-level systems [43].
A consequence of marginal stability to localized insta-

bilities is the predicted contribution of ω3 to the density
of states. A low-frequency density of states scaling as ω2

(consistent with mean-field expectations [44]) has been
reported [45] while others find ω4 [46, 47]. The ω4 scal-
ing has been predicted for stable finite-size disordered
systems [48] and typically dominates for finite systems,
which are stable to localized instabilities. However, it
has recently been reported that the low-frequency den-
sity of states for a T = 0 disordered glass of particles
with inverse power-law repulsions scales as D(ω) ∼ ω3 if

the glasses were prepared by sufficiently rapid quenching
from a sufficiently high temperature [49]. For sufficiently
slow quenches from lower temperatures, D(ω) ∼ ω4

was found for N = 2000 particle systems. These find-
ings are consistent with our results. Rapidly-quenched
systems should have more “soft spots” [12] or equiva-
lently, more incipient instabilities than slowly-quenched
systems. Thus, the number of instabilities per stress in-
terval, Pτ , should be higher for rapidly-quenched sys-
tems, possibly leading to a dominant ω3 contribution
even in finite systems.
One interesting conclusion from our results is that the

nature of the ground states in jammed systems has uni-
versal anharmonic as well as harmonic properties. Har-
monic properties such as the elastic moduli and density
of vibrational states are universal in jammed packings of
particles with repulsive, finite-ranged potentials and the
existence of universal anharmonic features has previously
been hinted at in jammed systems [8]. The anharmonic
features studied here, however, are likely to be even more
broadly universal because they originate from the scaling
of the fold instability. Such instabilities have been found
in Lennard-Jones glasses [3–6] and the scaling of the shear
yield stress for our jammed packings is the same as that
observed earlier for Lennard-Jones glasses [25]. As long
as the distribution of a3 has finite and nonzero values of
〈a−1

3 〉 and 〈a1/33 〉, the scalings we predict for the density
of states and energy barrier distribution should hold.
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