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In many contexts it is extremely costly to perform enough high quality experimental measurements
to accurately parameterize a predictive quantitative model. However, it is often much easier to
carry out large numbers of experiments that indicate whether each sample is above or below a given
threshold. Can many such categorical or “coarse” measurements be combined with a much smaller
number of high resolution or “fine” measurements to yield accurate models? Here, we demonstrate
an intuitive strategy, inspired by statistical physics, wherein the coarse measurements are used
to identify the salient features of the data, while the fine measurements determine the relative
importance of these features. A linear model is inferred from the fine measurements, augmented
by a quadratic term that captures the correlation structure of the coarse data. We illustrate our
strategy by considering the problems of predicting the antimalarial potency and aqueous solubility
of small organic molecules from their 2D molecular structure.

A large class of scientific questions asks whether depen-
dent variables can be accurately predicted by using train-
ing data to learn the parameters of quantitative mod-
els. Classical statistics shows that this is possible if suffi-
ciently many high resolution measurements are available,
though the cost of performing these experiments can be
prohibitive. On the other hand, in many settings, it can
be straightforward to evaluate whether a measurement is
above or below a certain threshold, raising the question
of how such measurements can be incorporated into the
modelling framework.

Examples abound in disparate fields. For instance, pre-
dicting the solubility of organic molecules is a fundamen-
tal challenge in physical chemistry [1]. Although accu-
rate measurements are extremely difficult to obtain [2],
determining whether a molecule is soluble at a particular
concentration is comparatively simple. Similarly, in drug
discovery, biochemical assays that determine whether a
molecule binds to a given receptor are much simpler than
measuring protein-ligand binding affinity [3]. In protein
biophysics, a key challenge is to predict the effect of
amino acid changes on protein phenotype. Here, thresh-
old measurements are naturally provided by homologous
sequences from the same protein family [4–8]. In con-
trast, experimentally measuring the phenotypic change
is much more difficult. A related problem is to predict
the viral fitness landscape given HIV sequences obtained
from patients; again collecting patient samples is much
easier than measuring fitness directly [9, 10]. In single-
cell RNA sequencing, decomposition methods that ex-
tract the correlation structure of shallow gene expression

measurements is an ongoing challenge [11, 12].

Despite the ubiquity of this problem, to our knowledge
there is no principled method for combining numerous
binary/categorical (“coarse”) measurements with fewer
quantitative (“fine”) measurements to produce a predic-
tive model. Although regression approaches can account
for a prior estimate of sample error [13], this is not the
same as combining two qualitatively distinct forms of
data to build a more accurate model.

In this Letter, we introduce an intuitive method that
combines coarse and fine measurements. The coarse mea-
surements provide sets of labelled samples – those data
above and below some threshold – and the proposed
method extracts features from the correlations of the
variables in each set. Their contribution to the depen-
dent variable is then determined by using the fine mea-
surements to build a regression model for these features.
Our model augments a quantitative linear model with
a quadratic term which captures the correlation struc-
ture extracted from the coarse data. We illustrate our
approach by applying it to solubility prediction, and in-
terpret the approach in the context of the Ising model.

To fix ideas, we assume each sample is character-
ized by a vector of p properties fi ∈ R

p. The binary
data indicates that N+ (N−) samples are above (below)
some threshold. In addition, we are given y ∈ R

M ,
quantitative measurements for M additional samples.
These measurements could be binding affinity, solubil-
ity etc. We construct matrices R± ∈ R

N±×p for samples
above/below the threshold, with columns of R+ and R−

normalized separately to have zero mean and unit vari-
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ance. Intuitively, if there are combinations of the p prop-
erties that are always present in either sample set, then
these properties should be good predictors of the mea-
surement. Such persistent correlations can be identified
from the eigendecomposition of each sample covariance
matrix C±

C± =
1

N±

RT
±R±

=

N±
∑

i=1

λ±
i u

±
i ⊗ u±

i , (1)

where {λ±
i }, {u±

i } are the eigenvalues and eigenvec-
tors (note we perform separate eigendecompositions for
the two matrices C±). Each u±

i identifies a particular
combination of the p properties, explaining a fraction
λ±
i /

∑

i λ
±
i of the variance [13]. Each matrix C± is an

unbiased estimator of the corresponding true covariance
matrix. The quality of this estimator depends on data
sampling. For example, one may inadvertently assay cer-
tain samples (easy to obtain, measure etc.), which could
distort the estimator by causing an eigenvector with large
eigenvalue to be localized on features common to these
samples, even though they do not predict the output vari-
able. For protein sequences, a natural source of such
spurious correlations is phylogeny [14, 15].
Here we propose that whereas the eigenvectors u±

i reli-
ably identify data features, their significance as estimated
by the corresponding eigenvalues λ±

i can be severely cor-
rupted by imperfect sampling. Later we justify this
ansatz with ideas from statistical physics, and show that
this characterization applies to a large class of problems.
This ansatz suggests a strategy to mitigate the corrup-
tion by using the additional quantitative measurements
to determine the significance of each feature. We posit a
general quadratic model

yi = hT fi + fTi Jfi + ǫi. (2)

Here h is the variable-specific effect, J captures the cou-
pling between variables, and ǫi ∼ N(0, σ) models random
error. There are p parameters in h and p(p − 1)/2 pa-
rameters in J . If one had M ≫ p(p + 1)/2 quantitative
measurements, these parameters could be estimated us-
ing linear least squares regression. However, it is costly
to perform many detailed measurements, so we turn in-
stead to the matrices C±. We pose the ansatz

J =

p̂+
∑

k=1

c+k u
+

k ⊗ u+

k +

p̂−
∑

k=1

c−k u
−
k ⊗ u−

k . (3)

Here p̂± ≤ p, since some eigenvectors will reflect noise
due to finite sampling [16–18]. Our ansatz reflects the
hypothesis that the eigendecomposition of C± captures
variable-variable correlations. If the number of samples
is much smaller than the number of variables, random

matrix theory provides a rigorous way to determine p̂±
[16–21]; this case will be discussed in detail later. Re-
laxing this assumption, we include all eigenvectors and
determine the parameters h, c+ and c− by regressing
against the the few quantitative measurements available.
We note that the ansatz (3) reduces the number of vari-
ables to p+ p̂+ + p̂−. In the case where the coarse mea-
surements yield multiple categories (or a single category),
our method generalizes by forming separate correlation
matrices for each category, and positing that J is a sum
of the outer product of all eigenvectors with coefficients
determined by regressing against the quantitative data.
Our method generalises to Generalised Linear Models
with a link function on the right hand side of Equation
(2).

To illustrate our approach, we consider two examples:
predicting the potency of chemicals against malaria and
the equilibrium aqueous solubility of molecules.

Antimalarials – Developing accurate models that can
rank the potency of a library of compounds against a tar-
get is an important unsolved challenge in drug discovery.
We consider a published antimalarial screening campaign
[22]: binary but high throughput assays reported 1528
active compounds against malaria, lower throughput but
quantitative assays measured the potency (pIC50) of only
1189 compounds [22, 23]. Figure 1A shows that by com-
bining binary and quantitative measurements, an hith-
erto unattempted strategy, an order of magnitude less
quantitative measurements could have been performed
to yield a model with similar predictive accuracy (c.f.
Supplementary Information showing the same result for
the Pearson correlation coefficient). Moreover, the model
with coarse measurements clearly outperforms the linear
model without the coarse measurements and the “null”
quadratic model where the vectors u±

k are random or-
thogonal vectors (i.e. random R±). In the Supplemental
Information we show that our model also outperforms di-
rect quadratic regression. The compounds are described
using the 1024-bit Morgan6 Fingerprint [24] generated
with rdKit [25].

Solubility – Predicting the aqueous solubility of
molecules is a fundamental problem in physical chemistry
important to a plethora of chemical industries. How-
ever, accurate solubility assays are low throughput (∼ 1
hour/compound [26]). Figure 1B shows that one could
obtain an accurate solubility model (r2 = 0.85, MAE =
0.61) if one were to combine the outcome of a coarse sol-
ubility assay that could only tell whether a compound
is soluble (< 10−4 mol/L) or not (> 10−2 mol/L) with
much fewer quantitive solubility data. We use a standard
dataset of the solubility of 1144 organic molecules [27],
and describe the molecule by concatenating the Avalon
Fingerprint [28], the MACCS Fingerprint [29], and the
1024-bit Morgan6 Fingerprint [24]. Our result compares
favourably with other models that also use binary molec-
ular fingerprints, e.g. kernel partial least squares regres-
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FIG. 1. Combining coarse and fine measurements accurately
predicts antimalarial activity and solubility. The predictive
accuracy of (A) pIC

50
against malaria and (B) solubility as a

function of the number of quantitative measurements given to
the model with coarse measurements (blue line), and without
(red line). Including random quadratic terms (orange line) is
not effective; error bars obtained over 30 random partitions
of data into training (90%) and verification (10%) sets. (In-
set) Out-of-sample solubility prediction with 90% of the full
dataset has a mean absolute error of 0.61 (r2 = 0.85). The
estimate is arrived at by analysing 10 random partitions of
the data into training and verification sets.

sion achieves r2 = 0.83 [30].

To understand why our heuristic strategy is successful,
we consider a model problem where data is generated
according to Eqn. (2), which is the maximum entropy
model [31–33], analogous to the Ising model. We thus
interpret the dependent variable as an “energy”, noting
that the logarithm of the solubility is proportional to
the solvation energy. The interaction matrix J can be
decomposed into a sum of outer products of eigenvectors
ζi (Hopfield patterns [34]), and eigenvalues Ei (Hopfield
energies) as

J =

m
∑

i=1

Eiζi ⊗ ζi. (4)

Furthermore, to model the binary features used in solu-
bility prediction, we make the assumption that the inde-
pendent variable is a vector of ±1.

To simulate binary measurements we randomly draw
samples from the uniform distribution, evaluate Eqn. (2)
to determine the energy of each sample, and retain those
samples that fall below a certain energy. Consider an in-
teraction matrix J with p = 100, and m = 3 randomly
generated patterns. To fix ideas, henceforth let all pat-
terns be attractive with (E1, E2, E3) = (−30,−25,−20),
h = 0 and ǫi = 0. Using this model, we generate 5000
random vectors, consider the N = 500 samples with low-
est energy as above threshold samples, and compute the
eigendecomposition of the resulting correlation matrix.

Figure 2A shows that the eigenvalue distribution of
the sample correlation matrix C+ follows the Marčenko-
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FIG. 2. Hopfield patterns can be recovered from thresh-
old sampling. (A) Histogram of eigenvalues agrees with the
Marčenko-Pastur distribution (red curve) save for three sig-
nificant eigenvalues. (B) The top eigenvector is the lowest
energy Hopfield pattern; the other eigenvectors are shown in
Supplemental Information. Random matrix cleaning allows
us to successfully (C) recover the coupling matrix J and (D)
predict Hopfield energies.

Pastur distribution expected for a random matrix [35],

ρ(λ) =

√

[

(

1 +
√
γ
)2 − λ

]

+

[

λ−
(

1−√
γ
)2
)
]

+

2πγλ
(5)

where (·)+ = max(·, 0), γ = p/N , with the exception of
three distinct eigenvalues. Figure 2B shows that their
corresponding eigenvectors are indeed the Hopfield pat-
terns that we put in. Therefore, the large eigenvectors of
C+ correspond to eigenvectors of J . Note that the ran-
dom matrix theory framework applies because m ≪ p,
i.e. the signal is low rank compared to the noise. If the
signal was high rank, all eigenvectors should be included
and their significance determined by regression against
fine measurements, as in the examples discussed above.
Turning to eigenvalues, in this model, which features

uniform sampling, we find that the eigenvalues are pro-
portional to the Hopfield energy Ei. This allows us to
“clean” the correlation matrix, by using the q eigenvec-
tors above the Marčenko-Pastur threshold to construct
a rank q approximation JMP of the correlation matrix
(here q = 3). Figure 2C shows that JMP accurately re-
constructs J , and allows accurate prediction of the en-
ergy of particular states (Figure 2D). Analogously, the
eigendecomposition of C− allows one to recover repulsive
patterns with positive Hopfield energies (see Supplemen-
tal Information).
Since the Hopfield patterns are energy minima, taken

together Figure 2A-D imply that the probability of the
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FIG. 3. Hopfield inference with random matrix cleaning is
robust to the energy threshold. Here ρ is the Pearson correla-
tion coefficient between the entries in J and JMP. The results
are computed by averaging over 50 realizations.

system visiting a particular basin under uniform sam-
pling is proportional to the energy of that minima.
Therefore, the hypervolume of each energy basin is pro-
portional to the basin depth. This fact can be derived
by noting that Eqn. (2) is a quadratic form, so the Hes-
sian matrix is a constant. Therefore, all local minima
have the same mean curvature. Given that low lying
energy minima are wide, we can extract the position of
energy minima in the space of input variables by study-
ing the correlation structure of the binary dataset. We
note that the correlation between basin hypervolume and
basin depth appears in many complex physical systems
beyond the Ising model [36–38].

A lingering question is whether our inference proce-
dure is robust to the choice of threshold. To test this, we
consider m Hopfield patterns, chosen as eigenvectors of
a symmetrized p× p Gaussian random matrix, with the
Hopfield energy chosen to be Gaussian distributed with
mean 10 and unit variance. We draw 10000 samples ran-
domly and compute the correlation matrix with the low-
est energy N samples. Figure 3 shows that our method
is robust: the correlation coefficient between J and JMP

is large and constant for a wide range of thresholds and
number of Hopfield patterns. The question of how many
energy minima can be recovered from the binary data
and a thermodynamic interpretation is discussed in the
Supplemental Information.

We now turn to consider two common scenarios that
break the assumptions made so far, stratified sampling
and more complex energy landscapes.

Stratified sampling: Thus far we assumed that the sam-
pling is uniform before thresholding. However, in many
settings, the sampling is biased. To model this effect, we
draw 5000 random samples, but freeze the first 5 variables
to +1 for the first 2500 samples and the last 5 variables
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FIG. 4. Few quantitative measurements enable J to be in-
ferred accurately for stratified datasets. (A) There are now
four significant eigenvectors but still only three Hopfield pat-
terns in the model. (B)-(D) The top eigenvector is uncorre-
lated with all Hopfield patterns, and the Hopfield patterns are
demoted to the second to fourth significant eigenvectors. (E)
Random matrix cleaning does not recover the coupling ma-
trix. (F) Blue data points: The elements of the coupling ma-
trix recovered by incorporating quantitative data and using
Eqn. (3); Orange data points: the elements of the coupling
matrix recovered using the quantitative data only and ridge
regression (with Jij being the coefficients).

to −1 for the remaining 2500 samples. We then evalu-
ate the energy, and take again the lowest 10th percentile.
Figure 4A-D shows that the frozen variables introduce
sample-sample correlations, and now there are 4 signifi-
cant eigenvectors with the first Hopfield pattern demoted
to the second largest eigenvector (Figure 4C). As such,
the informative eigenvectors are still present in JMP, but
the eigenvalues are misplaced.

In this case, näıve random matrix cleaning does not
recover J (Figure 4E), since there is no a priori reason to
discard the first eigenvector unless we know the Hopfield
patterns beforehand. We need additional information –
for which we turn to the quantitative measurements – to
accurately recover the Hopfield energies. Figure 4F shows
that an additional 500 quantitative measurement allow
us to recover the coupling matrix (MAE = 0.12) using
ridge regression and the ansatz Eqn. (3). The error is
significantly larger (MAE = 0.31) if only the quantitative
measurements are used.

Complex energy landscapes : The geometric property
that the depth of an energy minima is related to its
hypervolume is not universal to all energy landscapes
[39, 40]. A natural question is whether the significant
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eigenvectors and eigenvalues of the correlation matrices
of samples below/above an energy threshold allow us to
infer features of a complex energy landscapes. We con-
sider a landscape that comprises a sum of Gaussians

H(f) =
∑

i

Ei exp
(

−E2
i (f · ζi)

2
)

. (6)

This landscape has the property that the depth of each
energy minima, Ei (located at ζi), is inversely propor-
tional to its width 1/Ei. As above, we let (E1, E2, E3) =
(−30,−25,−20) and generate Hopfield patterns by diag-
onalising a symmetrized Gaussian random matrix. We
draw 5000 samples and threshold to find the 500 low-
est energy samples. Figure 5 shows that there are again
three significant eigenvectors above the Marčenko-Pastur
threshold, but the lowest energy Hopfield pattern is de-
moted to the third eigenvector, while the highest energy
Hopfield pattern is promoted to the top eigenvector. This
is expected: the eigenvalue corresponding to each mini-
mum is proportional to the number of samples near that
minimum, i.e. the basin volume, which in this case is not
proportional to basin depth. However, the eigenvectors
still indicate the locations of the energy minima, moti-
vating the approach described in Eqn. (2), where we use
these eigenvectors to identify features.
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FIG. 5. For energy landscapes where basin depth is not pro-
portional to basin width, the eigenvectors indicate the loca-
tions of energy minima but the eigenvalues are awry. (A)
There are three significant eigenvectors above the Marčenko-
Pastur threshold. (B) - (D) The top eigenvector is correlated
with the highest energy minimum, and the last significant
eigenvector is correlated with the lowest energy minimum.

In conclusion, we develop a general strategy, grounded
in statistical physics, which integrates coarse and fine
measurements to yield a predictive model. Since coarse

measurements are often significantly less costly to ob-
tain, our strategy provides a new avenue for experiment
design. Although our Letter only considered an Ising-
type model, the fact that the eigenvectors of the correla-
tion matrix of coarse measurements point toward energy
minima suggests a natural way to integrate our result
into more complex non-linear models, for example by us-
ing f · ui, the overlaps between the sample vector and
each eigenvector, as inputs to a general nonlinear func-
tion such as an artificial neural network.
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