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Plasma turbulence is investigated using unprecedented high-resolution ion velocity distribution
measurements by the Magnetospheric Multiscale Mission (MMS) in the Earth’s magnetosheath.
This novel observation of a highly structured particle distribution suggests a cascade-like process in
velocity space. Complex velocity space structure is investigated using a three-dimensional Hermite
transform, revealing, for the first time in observational data, a power law distribution of moments.
In analogy to hydrodynamics, a Kolmogorov approach leads directly to a range of predictions for
this phase-space transport. The scaling theory is found to be in agreement with observations.
The combined use of state-of-the-art MMS datasets, novel implementation of a Hermite transform
method, and scaling theory of the velocity cascade, opens new pathways to understanding of plasma
turbulence and the crucial velocity space features that lead to dissipation in plasmas.

Turbulence in fluids is characterized by nonlinear in-
teractions that transfer energy from large to small scales,
eventually producing heat. For a collisional medium,
whether an ordinary gas or a plasma, turbulence leads
to complex real space structure, but the velocity space,
constrained by collisions, remains smooth and close to
local thermodynamic equilibrium (as, e.g., in Chapman-
Enskog theory [1].) However, in a weakly collisional
plasma, spatial fluctuations are accompanied by fluctu-
ations in velocity space, representing another essential
facet of plasma dynamics. The characterization of the ve-
locity space is challenging in computations and in exper-
iments, although recent Vlasov simulation has revealed
velocity space complexity, often found near real-space co-
herent structures [2–6]. Here we demonstrate an analysis
of new, highly accurate spacecraft data in the terrestrial
magnetosheath that quantifies the velocity cascade for
the first time in a space plasma. This methodology fills
an essential gap in our understanding of the final steps
of plasma dynamics that lead to dissipation and heating.

The observations reported here are enabled by the
Magnetospheric Multiscale Mission (MMS), launched in
2015 to explore magnetic reconnection. The MMS/FPI
instrument measures ion and electron velocity distribu-
tions (VDFs) at high time cadence, and with high res-
olution in angle and energy. High resolution measure-
ment and four-point observation is available for all in-
struments. MMS characterizes plasma turbulence with
unprecedented resolution and accuracy, as the spacecraft
orbit repeatedly crosses the Earth’s magnetosheath (see
e.g. Burch et al. [7]). Here we focus on one traversal
of the magnetosheath, and specifically on a quantitative

description of the ion velocity space cascade.

Magnetosheath data sample. The analysis below em-
ploys data from the period 2016-01-11, 00:57:04 to 2016-
01-11, 01:00:33, about five hours after an outbound mag-
netosheath crossing, and four hours before the next in-
bound crossing. Apogee is ≈12 Re at 02:16:54. The
spacecraft, separated by ∼ 40km (∼ 1

2 − 1 ion gyrora-
dius) are downstream of the quasi-parallel bow shock,
and the interplanetary magnetic field is nearly radial.
In such conditions, fully developed upstream turbulence
readily convects into the magnetosheath, The selected
interval contains fine scale activity including sub-proton
scale current sheets, as previously described by Chasapis
et al. [10]. The magnetic field in this period is highly
turbulent as shown in Figure 1-(a). For more back-
ground, see the Supplemental Material [8].

In this fairly typical compressive magne-
tosheath interval [9], large values of plasma beta
β ∼ 7 and the large ratio of rms fluctuations to
mean field strength, δb/B0 ∼ 1.5, indicates near-
isotropy of turbulence statistics. The magnetic
field power spectrum (see [8]) is consistent with Kol-
mogorov scaling in wavenumber k ≈ 2πf/V (bulk flow
speed V ), with a k−5/3 slope at low frequency f < 0.8
Hz, and a steeper k−8/3 spectrum at higher frequencies,
similar to the solar wind case [11]. Coherent structures
are present in the analyzed interval [3, 4, 10, 12, 13] and
these are associated with enhanced nonMaxwellian ki-
netic activity.

Our analysis concentrates on the ion velocity distribu-
tion functions (VDFs) f(v, t), measured by identical FPI
instruments on each MMS spacecraft MMSi (i = 1, .., 4).
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FIG. 1: Sample of MMS data, plotted vs. time (seconds),
beginning at 2016-01-11, 00:57:04 in the magnetosheath. (a)
Magnetic field components; (b) Enstrophy. Stars indicate se-
lected times at which we show ion VDFs in Fig. 2. The
analyses will refer to this time axis.

FPI time resolution for ion VDFs is ∆t = 150 ms, for the
entire burst interval duration of ∼ 210 seconds. The
VDFs are collected in the spacecraft frame in
spherical geometry, f(v, φ, θ, t). Here φ is the az-
imuthal angle (0 < φ < 2π), θ the angle with the
z (spin) axis (0 < θ < π), and 40 < v < 2400
km/s. At its highest time resolution, FPI sam-
ples 32 energy channels, and an interleaved set of
32 energy channels at the following time. Merg-
ing consecutive data samples allows construction
of a VDF with effectively double the energy res-
olution, 64 energy channels, but with reduction
of the time cadence by half, to 300 ms. We use
the merged, higher energy-resolution data in the
analysis below, with N =64 log-spaced energy
channels, Nφ = 32 and Nθ = 16 equally sampled
angular channels. Using this increased energy
resolution data also reduces velocity space data
gaps.
Hermite analysis method. We employ a 3D Hermite

transform representation of f(v, t), a method well-suited
for analytical and numerical study of plasmas [14–17].
The “physicists” Hermite polynomials are defined as

Hm(v) = (−1)mev
2 dm

dvm e
−v2

, orthogonal in a Hilbert
space where the metric is defined by the Maxwellian

weight function e−v2

. The one-dimensional basis func-
tions are

ψm(v) =
Hm

(

v−u
vth

)

√

2mm!
√
πvth

e
− (v−u)2

2v2
th , (1)

where u and vth are the bulk velocity and the thermal
speed, respectively, and m ≥ 0 is an integer.
The eigenfunctions in Eq. (1) obey the orthogonality

condition
∫∞
−∞ ψm(v)ψl(v)dv = δml. Using this basis,

one can obtain a 3D decomposition of the distribution
function

f(v) =
∑

m

fmψm(v), (2)

where the 3D eigenfunctions are ψm(v) =
ψ(mx, vx)ψ(my, vy)ψ(mz , vz), and the Hermite co-

efficients are

fm =

∫ ∞

−∞
f(v)ψm(v)d3v. (3)

Note that, in the case of a Maxwellian, f(v) = M(v) =

e−v2/2 and the first coefficient f0 = n

[2vth
√
π]3/2

. This

simple case gives a deep meaning to the Hermite pro-
jection in plasmas, namely that each Hermite index m
roughly corresponds to an order of the plasma moments:
the m = 1 coefficient corresponds to bulk flow fluctua-
tions; m = 2 corresponds to temperature deformations;
m = 3 to heat flux perturbations, and so on. This sug-
gests that highly deformed VDFs would produce a dis-
tribution of modes.
MMS analysis. We now perform a Hermite analysis of

the MMS data. We adopt a 3D non-uniform grid in each
direction based on the zeroes vj of the Hermite polyno-
mial of order Nv + 1, [HNv+1(vj) = 0; j = 0, Nv + 1].
For these results, we choose Nv ≡ Nvx = Nvy =
Nvz = 100. This spans a velocity space, centered at
zero speed, defined by the Nv + 1 values of vj ; j = 0, Nv

[18]. The velocity is normalized in terms of the local
thermal velocity vth(t), the density is normalized such
that n(t) = 1, and the local fluid velocity u(t) = 0 is
built into the representation (velocity is measured rela-
tive to the bulk fluid frame). This normalization is per-
formed at each (300ms cadence) time snapshot of the
ion VDF, for each spacecraft MMSi. Values of f(v)
are transformed from the native (MMS) spherical rep-
resentation to the non-uniform (Cartesian) grid, using a
2nd order interpolation method, weighting with volumes

V =
∫ v2
v1

∫ θ2
θ1

∫ φ2

φ1
v2sinθ dvdθdφ within each angular sec-

tor of the MMS data grid. We tested the accuracy of
the interpolation technique by comparing the case with
64 energy channels and 32 energy channels; these dif-
fer by negligible amounts for m < 20. This procedure
produces a normalized VDF on a new “Hermite grid”,
f(vx, vy, vz), where velocities are in units of local ther-
mal speed, with u = 0, and unit density. The occurrence
of missing data points is reduced by averaging f(v) over
the separate measurements on the four MMS satellites.
The effect of this averaging is discussed below and in [8].
Following this procedure results in a three dimen-

sional rendering of the interpolated VDF at a single time
(t ∼ 80 s in Fig. 1), illustrated in Fig. 2. The distri-
bution is highly non-Maxwellian, the pictorial represen-
tation already suggesting a broad spectrum of moments.
The same figure shows 2D cuts of the interpolated VDF,
at several different times: at t = 80 [same as panel (a);
at t = 156; and at t = 198 s. Fig. 1 provides the con-
text. It is evident that there are strong time-dependent
non-Maxwellian deviations. Due to the high speed flow
in the magnetosheath, one infers that such deformations
are likely initiated by various local processes [4, 19].
In order to quantify deviations from fluids, we com-

pute the mean square departure from Maxwellianity,
equivalent to the second Casimir invariant of the VDF,
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FIG. 2: (a) Ion velocity distribution function, obtained from
the MMS mission interpolating the function over a Hermite
grid (data from t = 80 s in Fig.1) and averaging over the
4 satellites. (b) 2D cut in the vx, vy plane, with 3D shaded
contours. Panels (c), (d) and (e) represents slices of the VDF
at different times, highlighted with stars in Fig. 1-(c).

which has been to called the enstrophy in analogy to the
mean square vorticity in hydrodynamics [20]. We de-
fine the local deviation from the associated Maxwellian
δf = f(v) −M(v), a procedure equivalent to subtract-
ing f0 from the Hermite series. Note that M(v) is the
Maxwellian at each time t, and that δf is therefore the
deviation from local equilibrium. Using this projection,
the Parseval theorem gives the enstrophy

Ω(t) ≡
∫ ∞

−∞
δf2(v, t)d3v =

∑

m>0

[fm(t)]
2
. (4)

This quantity is zero for a pure Maxwellian, and may be
compared with other measures of non-Maxwellianity in
plasma turbulence studies [4]. It is also related to what
is designated the “‘free energy” in certain reduced per-
turbative treatments of kinetic plasma (e.g., [21]). The
plasma enstrophy as a function of time is reported in Fig.
1-(b). Its behavior is quite bursty, and is qualitatively
connected to spatial intermittency in the system [4–6].
The distributions shown above in Fig. 2 correspond to
the times of local peaks of Ω(t) seen in Fig. 1-(b).
Following Eq. 3, and using the above normalization

and averaging procedures for the VDF data, we com-
pute the modal 3D Hermite spectrum f2

m
(t). We em-

phasize that this spectrum is not explicitly influ-
enced by variations in local bulk flow, tempera-
ture or density. For an ensemble average description
of the entire sample, our method averages the multidi-
mensional Hermite spectra of the shifted distributions
over time, indicating this as E(mx,my,mz) = 〈f2

m
(t)〉T .

The 3D modal spectrum (as in Fourier analysis) permits
examination of the full 3D structure of the spectral dis-
tribution. Given the great volume of data, it may be

reduced or sampled to attain more compact representa-
tions. To this end, we compute the reduced 2D spectra
as E(mx,my) =

∑

mz
E(mx,my,mz), and analogously

E(mx,mz) and E(my,mz). Figure 3 shows two of these
reduced spectra. Within their respective planes, these
spectra are quite isotropic, indicating the lack of pre-
ferred direction in the ensemble when referred to the
spacecraft frame. This leaves open the question as
to whether there are local preferred directions as-
sociated with quantities such as magnetic field or
shear within this stream. This will be examined
at a later time, but we do not anticipate a strong
magnetic field influence, given the large values of
δb/B0 and β.
Based on the 2D spectra, a reasonable way to char-

acterize the velocity space fluctuations for this dataset
is the isotropic velocity space spectrum. The isotropic
(omni-directional) Hermite spectrum, in analogy to the
classical spectral density in hydrodynamic turbulence, is
computed by summing E(mx,my,mz) over concentric
shells of thickness δ (here, unity) in the Hermite index
space. That is, P (m) =

∑

m− 1
2<|m′|≤m+ 1

2
E(m′).

The isotropic Hermite spectrum of magnetosheath tur-
bulence is reported in Fig. 3-(c). The velocity space dis-
tribution follows a power law behavior through at least
the first ten moments, indicating the possibility of a
phase-space turbulent cascade, as suggested in the lit-
erature [17, 21–27]. In particular, an important work by
Schekochihin et al. presents a set of expectations for this
velocity-space cascade, in the context of drift-wave turbu-
lence. Various tests have been performed to exam-
ine the robustness of the analysis presented here.
The adopted normalizations avoid unwanted in-
terference by routine fluid-like variations of the
zeroth, first and second moments. We found that
the apparent spectral break for m > 12, is not in-
fluenced by the noise level, the interpolation tech-
nique, and the statistical uncertainty due to lack
of data. Fluctuations in the first few moments are
a familiar feature in spectral analysis, and is frac-
tionally greater in the noise data. The spectrum
in Fig. 3-(c) has also been computed from single
MMS spacecraft data, obtaining the same results
form < 12; for further discussion. See Supplemen-
tal Material [8] for additional discussion of these
issues. Additional technical analyses will also be
presented elsewhere.
The model. To develop an inertial range model of the

observed spectrum P (m) ∼ m−α, seen in Figure 3-(c) at
m < 15, we develop a cascade theory based on qualita-
tive arguments, in style similar to the Kolmogorov phe-
nomenology [28]. The Boltzmann kinetic equation for
weakly-collisional plasma,

∂f

∂t
+∇ · (vf) + e

Mp

(

E +
v

c
×B

)

·∇vf = Cν , (5)

couples to the Maxwell equations for the electric E and
magneticB field. Mp indicates the mass and e the charge
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FIG. 3: (a) and (b): 2D reduced Hermite spectra, indicating
near-isotropy in these two velocity space planes. (c) Ensemble
(time-) averaged spectrum of the Hermite modes for the MMS
dataset. The best fit to a power law (dash-dot line) m−α gives
α ∼ 1.5, with an error of ∼ 7%. Line with -3/2 slope (dashed)
shown for reference. Error bars on data points are standard
error of the mean. Noise floor (lower dotted line) is estimated
using Hermite transform of randomized signal in velocity.

of ions. Eq. (5) includes a collision operator Cν , which
may have a complex form.
Upon computing the Hermite transform [...]m of

Eq.(5), one arrives at a fully equivalent evolution

equation for the coefficients ∂fm(x,t)
∂t . Our approach

is based on familiar assumptions employed in Navier-
Stokes turbulence theory. We neglect collisions which
are assumed to be confined to very high m Hermite
modes. The crux of the procedure rests on estimating the
timescales associated with the terms on the left hand side
of Eq.(5). That is, we estimate three times scales τv(m),
τE(m) and τB(m), such that [∇ · (vf)]m ∼ fm/τv(m),
[ e
Mp

E ·∇vf ]m ∼ fm/τE(m) and [ e
Mp

(vc ×B) ·∇vf ]m ∼
fm/τB(m). An assumption of locality of scale in Her-
mite space is justified by recalling the Hermite recursion
relations,

v ψm(v) =

√

m

2
ψm−1(v) +

√

m+ 1

2
ψm+1(v), (6)

∂ψm(v)

∂v
=

√

m

2
ψm−1(v) −

√

m+ 1

2
ψm+1(v). (7)

From these we see that the couplings between Hermite
modes in Eq.5 involve only local, nearest neighbors in m

[26]. Both differentiation and multiplication by v intro-
duce factors involving

√
m.

Proceeding, we envision three (asymptotic) regimes,

∂fm(t)

∂t
∼































vth
di

√
m fm(t) (a),

eE

Mpvth

√
m fm(t) (b),

eB

Mpc
m fm(t) (c),

(8)

associated respectively with the dominance of each of the
relevant terms in the Boltzmann equation. In [case
(a)] the dominant term is due to phase mixing
and the spatial structure is assumed to have a
characteristic scale ∼ di; in [case (b)] the velocity
space distortions are due to the electric field; in
[case (c)] the dynamics is governed by the mag-
netic field. Here E and B represent estimates of
the r.m.s electric and magnetic field strengths. At larger
scales > di, the ion inertial scale, one may approximate
E ∼ δu

c B. Other terms in the generalized Ohm’s law
may become dominant at scales < di, but we may as-
sume for simplicity that the total electric field remains
approximately continuous, so this simple estimate is re-
tained. We recall that di = VA/ωci, VA the Alfvén speed
and ωci = eB/Mpc the ion cyclotron frequency.
Following some simple rearrangements, introducing

the turbulent Mach numberMt = δu/vth and the plasma
beta β = v2th/V

2
A, we extract from Eq. 8 three character-

istic timescales:

τv(m) =
1√
β
√
m

ω−1
ci , (9)

τE(m) =
1

Mt
√
m

ω−1
ci , (10)

τB(m) =
1

m
ω−1
ci . (11)

In all three regimes we expect redistribution of fluctu-
ations in m-space, through a cascade/diffusion-like pro-
cess. In the above we suppress the vector index m, an-
ticipating an isotropic theory for flux across shells in |m|
as in a Kolmogorov approach.
At this stage, we adopt the hypothesis of an enstro-

phy cascade in the velocity space, based on the idea that
velocity space transfer conserves the quadratic “rugged”
invariant Ω, defined in Eq.(4). Thus, the first hypothesis
is that of a net constant enstrophy flux in the m-space,
namely

ǫ =
f2
m

τm
= const, (12)

where τm is the spectral transfer time for the enstrophy.
The second hypothesis concerns choice of the character-
istic time of this cascade, the simplest options being to
chose among (9)-(11). Finally, from simple dimensional
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arguments,

Ω = 〈
∫

δf2d3v〉x =
∑

m>0 f
2
m =

∫

P (m)dm,

→ P (m) ∼ f2
mm

−1, (13)

where we defined 〈...〉x as the physical space volume av-
erage. Using Eq.s (12), (13) and a characteristic time,
either (9) or (10), one finds

P (m) ∼ m−3/2. (14)

Analogously, using Eq.s (12) and (13), coupled with the
timescale in Eq. (11), one obtains

P (m) ∼ m−2. (15)

The −3/2 powerlaw in Eq. (14) should be valid in a
phase mixing or electric-field dominated regime, while
the prediction of −2 in Eq. (15) is suitable for a highly
magnetized plasma.
For the present observation, we fit an inertial range

powerlaw to the velocity-space cascade, as shown in Fig-
ure 3-(c), obtaining P (m) ∼ m−α, with α = 1.5 ± 0.1,
in agreement with Eq. (14). This result is consistent
with the characterization of this magnetosheath inter-
val, which is relatively high beta (∼ 7) and compressive
[Mt = O(1)].
To conclude, we have carried out an analysis of MMS

ion VDF data to visualize and describe the ion distri-
bution function in this low-collisionality space plasma
with unprecedented temporal and velocity-scale resolu-
tion. We observe here in spacecraft data the same kind of
fine scale velocity structure reported frequently in Vlasov
simulations [13, 19]. This motivates a further analysis of
the velocity space structure in terms of a Hermite spectral
analysis, which has the physically interesting interpreta-
tion as a moment hierarchy. The power law that emerges
in moments (Hermite indices) suggests a velocity space
cascade. We pursue this in a very preliminary way, in
analogy to classical hydrodynamics cascade. One first
identifies a conserved flux across scale – here the velocity

space enstrophy (or, free energy) – and the associated
dynamical time scales. From this emerges the possibility
of spectral slopes between -2 and -3/2. Other possibil-
ities may exist for other physical regimes in which dif-
ferent time scales become available. For the MMS mag-
netosheath interval analyzed here, the -3/2 slope seems
to be clearly favored, suggesting that the velocity space
cascade for this interval is governed by velocity advec-
tion (phase mixing) and/or electric effects [29]. In fu-
ture works we will expand the current analysis to include
additional datasets with varying plasma conditions, and
Vlasov simulations, while also examining the influence of
the local magnetic field and strong gradients.

This observation and analysis is preliminary, being
based on a novel set of high resolution observations, and
so we must eschew any assignment of universality. How-
ever, enabled by significant advances in diagnostics such
as those offered by MMS, this approach to understanding
velocity space structure may prove to be fruitful for fur-
ther studies in turbulent plasmas, in varying conditions.
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[9] D. Sundkvist, A. Retinó, A. Vaivads and S. D. Bale,
Phys. Rev. Lett., 99, 025004 (2007)

[10] A. Chasapis, W. H. Matthaeus, T. N. Parashar,
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