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This letter considers stellar core collapse in massive scalar–tensor theories of gravity. The presence
of a mass term for the scalar field allows for dramatic increases in the radiated gravitational wave
signal. There are several potential smoking gun signatures of a departure from general relativity
associated with this process. These signatures could show up within existing LIGO–Virgo searches.

Introduction – General relativity (GR) has success-
fully passed numerous tests [1, 2] and, in the words of
[3], “occupies a well-earned place next to the standard
model as one of the two pillars of modern physics”. And
yet, the enigmatic nature of dark energy and dark matter
evoked in the explanation of cosmological and astrophys-
ical observations [4], as well as theoretical considerations
regarding the renormalization of the theory in a quan-
tum theory sense, indicate that GR may ultimately need
modifications in the low and/or high-energy regime [5].

Tests of GR have so far been almost exclusively limited
to relatively weak fields. But the recent breakthrough
detection of gravitational waves (GWs) by LIGO [6] has
opened a new observational channel towards strong-field
gravity, and tests of Einstein’s theory are a key goal of
the new field of GW physics [7, 8]. Most GW-based tests
either (i) construct a phenomenological parameterization
of possible deviations from the expected physics and seek
to constrain the different parameters, or (ii) model the
physical system in the framework of a chosen alternative
theory to see if it can better explain the observed data.

The latter approach faces significant challenges; the
candidate theory must agree with GR in the well-tested
weak-field regime and yet lead to measurable strong-
gravity effects. Furthermore a mathematical understand-
ing of the theory, in particular its well-posedness, is nec-
essary for fully non-linear simulations. One of the most
popular candidate extensions of GR are scalar tensor
(ST) theories of gravity [9, 10], adding a scalar sector
to the vector and tensor fields of Maxwell-GR. Scalar
fields naturally arise in higher-dimensional theories in-
cluding string theory, feature prominently in cosmology,
and ST theories have a well-posed Cauchy formulation.
ST theories also give rise to the most concrete example of
a strong deviation from GR known to date: the sponta-
neous scalarization of neutron stars [11]. The magnitude
of this effect facilitates strong constraints on the param-
eter space of ST theory through binary pulsar observa-
tions [12–14]. These bounds, as well as the impressive
constraints obtained from the Cassini mission [15], how-
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ever, are all based on observations of widely separated
objects and, therefore, apply only to massless ST theory
(or theories with a scalar mass µ. 10−19 eV yielding a
Compton wavelength, λc = (2π~)/(µc), greater than or
comparable to the objects’ separation [3, 16]).

Deviations of black-hole spacetimes from GR are lim-
ited in ST gravity due to the no-hair theorems [17, 18],
although we note that scalar radiation has been observed
in black-hole binary simulations for non-trivial scalar po-
tentials [19] or boundary conditions [20]. Nevertheless,
the most straightforward way to bypass the no-hair the-
orems is to depart from vacuum. Neutron stars and stel-
lar core collapse thus appear to be the most promising
systems to search for characteristic signatures; cf. [21–23]
and references therein.

Here, we perform the first study of dynamic strong-
field systems in massive ST theory through exploring GW
generation in core collapse. As we will see below, the GW
signal is dominated by the rapid phase transition from
weak to strong scalarization and the ensuing dispersion of
the signal. We therefore focus in this study on spherically
symmetric models which capture the key features of the
collapse responsible for spontaneous scalarization.

The most promising range of the scalar field mass
µ for generating strong scalarization and satisfying ex-
isting binary pulsar constraints has been identified as
µ & 10−15 eV [16, 24]. In massive ST theory, low fre-
quency modes with f < f∗ = µ/(2π~) decay expo-
nentially with distance rather than radiate towards in-
finity. For masses µ > 10−13 eV (f∗ > 24.2 Hz), the
GW power detectable inside the LIGO sensitivity win-
dow 10 Hz . f . 103 Hz would be considerably reduced
due to this effect. We therefore study in this work the
range 10−15 eV . µ . 10−13 eV.

Formalism – The starting point of our formulation is
the generic action for a scalar-tensor theory of gravity
that (i) involves a single scalar field non-minimally cou-
pled to the metric, (ii) obeys the covariance principle, (iii)
results in field equations of at most second differential or-
der, and (iv) satisfies the weak equivalence principle. In
the Einstein frame, the action can be written in the form
(using natural units G = c = 1) [5, 10]

S =

∫
dx4

√−ḡ
16π

[R̄− 2ḡµν∂µϕ∂νϕ− 4V (ϕ)] + Sm, (1)
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where ϕ is the scalar field, F (ϕ) the coupling function,
V (ϕ) the potential, and R̄ and ḡ are the Ricci scalar
and determinant constructed from the conformal met-
ric ḡµν . Sm denotes the contribution due to matter
fields, that couple to the physical or Jordan-Fierz met-
ric gµν = ḡµν/F (ϕ) and the physical energy momentum

tensor is Tµν =2(−g)−1/2δSm/δgµν , assumed here to de-
scribe a perfect fluid with baryon density ρ, pressure P ,
internal energy ε, enthalpy H and 4-velocity uα,

Tαβ = ρHuαuβ + Pgαβ , H = 1 + ε+ P/ρ . (2)

The equations of motion are given by

Ḡαβ = 2∂αϕ∂βϕ− ḡαβ∂µϕ∂µϕ+ 8πT̄αβ − 2V ḡαβ ,

∇̄µ∇̄µϕ = 2π(F,ϕ/F )T̄ + V,ϕ ,

∇̄µT̄µα = −1

2

F,ϕ
F
T̄ ḡαµ∂µϕ , ∇µ(ρuµ) = 0 , (3)

where the conformal energy momentum tensor is T̄αβ =
Tαβ/F , ∇̄ is the covariant derivative constructed from
ḡµν , the subscript ,ϕ denotes d/dϕ and the last equation
arises from conservation of the matter current density in
the physical frame.

Henceforth, we assume spherical symmetry, writing

ds̄2 = ḡµνdx
µdxν = −Fα2dt2 + FX2dr2 + r2dΩ2 , (4)

where α = α(t, r), X = X(t, r) and we also de-

fine for convenience Φ = ln(
√
F α) and the gravi-

tational mass m = r[1 − (FX2)−1]/2. In spheri-
cal symmetry, the 4-velocity in the Jordan frame is
uµ = (1− v2)−1/2 [α−1, v X−1, 0, 0] , where the veloc-
ity field v as well as the other matter variables ρ, P , ε
and H are also functions of (t, r). High-resolution shock
capturing requires a flux conservative formulation of the
matter equations which is achieved by (cf. [23]) changing
from variables (ρ, v, H) to

D=
ρXF−3/2

√
1− v2

, Sr=
ρHvF−2

(1− v2)
, τ=

Sr

v
− P

F 2
−D . (5)

Finally, we introduce η = X−1 ∂rϕ and ψ = α−1 ∂tϕ.
The resulting system of equations is identical to
Eqs. (2.21), (2.22), (2.27), (2.28), (2.33)-(2.39) in [23] ex-
cept for the following additional potential terms (brack-
eted numbers denote right-hand-sides in Ref. [23])

∂rΦ = [2.21]− rFX2V ,

∂rm = [2.22] + r2V ,

∂tψ = [2.28]− αFV,ϕ ,
sSr = [2.38]− rV αXF

(
Srv − τ −D + F−2P

)
, (6)

where sSr is the source term in the evolution of Sr. All
other equations in the above list remain unaltered.

We have implemented these equations by adding the
potential terms to the gr1d code originally developed in
[25] and extended to massless ST theory in [23]. As in

[23], we use a phenomenological hybrid equation of state
(EOS) P = Pc + Pth, ε = εc + εth with the cold part

ρ ≤ ρnuc : Pc = K1ρ
Γ1 , εc =

K1

Γ1 − 1
ρΓ1−1

ρ > ρnuc : Pc = K2ρ
Γ2 , εc =

K2

Γ2 − 1
ρΓ2−1 + E3 , (7)

where ρnuc = 2 × 1014 g cm−3, K1 = 4.9345 × 1014 [cgs],
K2 and E3 follow from continuity; εth measures the de-
parture of the evolved internal energy ε from the cold
contribution and generates a thermal pressure compo-
nent Pth = (Γth − 1)ρεth . We thus have three pa-
rameters to specify the EOS. As in [23], we consider
Γ1 = {1.28, 1.3, 1.32} for the subnuclear, Γ2 = {2.5, 3}
for the supernuclear EOS and Γth = {1.35, 1.5} for the
thermal part describing a mixture of relativistic and non-
relativistic gases. For the conformal factor, we use the
quadratic Taylor expansion commonly employed in the
literature [11, 26] and the potential endows the scalar
field with a mass µ,

F = exp(−2α0ϕ− β0ϕ
2) , V = ~−2µ2 ϕ2/2 . (8)

The discretization, grid and boundary treatment are
identical to those described in detail in Sec. 3 of [23].

Simulations – For the simulations reported here, we
employ a uniform grid with ∆r = 166 m inside r = 40 km
and logarithmically increasing grid spacing up to the
outer boundary at 9 × 105 km. As detailed in the Sup-
plemental Material, we observe convergence between first
and second order, in agreement with the use of first and
second order accurate discretization techniques in the
code, resulting in a numerical uncertainy of about 4 %
in the wave signals reported below.

All simulations start with the WH12 model of the cata-
log of realistic pre-SN models [27] with initially vanishing
scalar field. The evolution is then characterized by six pa-
rameters: the above mentioned EOS parameters Γ1, Γ2

and Γth as well as mass µ of the scalar field and α0, β0

in the conformal function which we vary in the ranges
0 ≤ µ ≤ 10−13 eV , 10−4 ≤ α0 ≤ 1 , − 25 ≤ β0 ≤ −5 .
Our observations in these simulations are summarized
as follows. (i) The collapse dynamics are similar to the
scenario displayed in the left panels of Fig. 4 in [23].
As conjectured therein, the baryonic matter strongly af-
fects the scalar radiation but itself is less sensitive to the
scalar field. (ii) For sufficiently negative β0 the scalar
field reaches amplitudes of order unity, independent of
the EOS. Even in the massless case µ = 0, we observe
this strong scalarization; the key impact of the massive
field therefore lies in the weaker constraints on α0, β0

rather than a direct effect of terms involving µ. For il-
lustration, we plot in Fig. 1 the wave signal rϕ extracted
at 5×104 km for various parameter combinations. These
waveforms are to be compared with those obtained for
present observational bounds in the core collapse in mass-
less ST theory as shown in Fig. 6 of [23]. The amplitudes
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FIG. 1. Waveforms extracted at 5 × 104 km. The legend lists
deviations from the fiducial parameters µ = 10−14 eV, α0 =
10−2, β0 = −20, Γ1 = 1.3, Γ2 = 2.5, Γth = 1.35.

observed here are larger by ∼ 104 for neutron star forma-
tion from less massive progenitors and even exceed the
strong signals in black hole formation from more mas-
sive progenitors by ∼ 100. This hyper-scalarization of
the collapsing stars in massive ST theory (as compared
with the more strongly constrained massless case) and
the resulting substantially larger GW signals are one of
the key results of this work. Translating this increase
into improved observational signatures for GW detectors,
however, requires careful consideration of the signal’s dis-
persion as it propagates from source to detector; this is
the subject of the remainder of this letter.

Wave extraction and propagation – At large dis-
tances from the source, the dynamics of the scalar
field are well approximated by the flat-space equation,
∂2
t ϕ−∇2ϕ+ ~−2µ2ϕ = 0 , which, in spherical symme-

try, reduces to a 1D wave equation for σ ≡ rϕ. Plane–
wave solutions propagate with phase and group veloci-
ties vg/p =[1−(ω2

∗/ω
2)]±1/2 for angular frequencies above

ω∗≡µ/~, but are exponentially damped for lower fre-
quencies.

In the massless case (µ=0) the general solution for σ
is the sum of an ingoing and an outgoing pulse prop-
agating at the speed of light. This makes interpret-
ing the output of core collapse simulations particularly
simple; one extracts the scalar field σ(t; rex) at a suf-
ficiently large extraction radius rex and after imposing
outgoing boundary conditions the signal at r>rex is
σ(t; r)=σ(t−(r−rex); rex).

In the massive case, the situation is complicated by
the dispersive nature of wave propagation. However,
an analytic solution for the field at large radii can
still be written down, albeit in the frequency domain;
σ̃(ω; r)≡

∫
dt σ(t; r)eiωt. The boundary conditions need

to be modified for the massive case; frequencies |ω|>ω∗
propagate and we continue to impose the outgoing con-
dition for these, however frequencies |ω|<ω∗ are expo-
nential (growing or damped) and we impose that these

modes decay with radius. These conditions determine
the Fourier transform of the signal at large radii in terms
of the signal on the extraction sphere (note the ω ranges),

σ̃(ω; r)= σ̃(ω; rex)

{
e−i
√
ω2–ω2

∗(r−rex) forω<−ω∗
e+i
√
ω2–ω2

∗(r−rex) forω>−ω∗
. (9)

Note that the power spectrum, |σ̃(ω; r)|2, is unchanged
during propagation except for the exponential suppres-
sion of frequencies |ω|<ω∗.

As signals propagate, they spread out in time, but the
frequency content above the critical frequency ω∗ remains
unchanged. Consequently, the number of wave cycles in
the signal increases with propagation distance; cf. Fig. 2.
In the limit of large distances (relevant for LIGO observa-
tions of galactic supernovae) the signals are highly oscilla-
tory, i.e. the phase varies much more rapidly than the fre-
quency, and the inverse Fourier transform of Eq. (9) may
be evaluated in the stationary phase approximation (SPA
[28]). At each instant the signal is quasi-monochromatic
with frequency

Ω(t) = ω∗/

√
1− [(r − rex)/t]

2
for t > r−rex . (10)

This time–frequency structure sounds like an inverse
chirp, with high frequencies arriving before low ones. The
origin of this structure can be understood by noting that
each frequency component arrives after the travel time of
the associated group velocity. Using the SPA the time do-
main signal is given by σ(t, r)=A(t, r) cosφ(t, r), where

φ(t, r) =
√

Ω2 − ω2
∗(r − rex)− Ωt− π

4
+ Arg[σ̃(Ω, rex)] ,

A(t, r) =

√
2

π

(Ω2 − ω2
∗)

3/4

ω∗(r − rex)1/2
Abs[σ̃(Ω, rex)] , (11)

and the SPA frequency, Ω(t), is given by Eq. (10).
The Jordan frame metric perturbation is determined

by the scalar field ϕ (the tensorial GW degrees of free-
dom vanish in spherical symmetry). Any GW detec-
tor, small compared to the GW wavelength λ=2π/ω,
measures the electric components of the Riemann ten-
sor; R0i0j [2]. In massless ST theory this 3-tensor is
transverse to the GW wavevector, R0i0j∝δij−kikj , with
strain amplitude hB =2α0ϕ (this is called a breathing
mode). In massive ST theory there is an additional lon-
gitudinal mode, R0i0j∝kikj , with suppressed amplitude
hL =(ω∗/ω)2hB. A GW interferometer responds identi-
cally (up to a sign) to both of these polarizations mean-
ing they cannot be distinguished [2]; henceforth we refer
to the overall measurable scalar signal with amplitude
hS =hB−hL =2α0[1−(ω∗/ω)2]ϕ. In practice this factor
reduces the strain only by at most a few % at t . 1010 s.

LIGO observations – GW signals from stellar collapse
in ST theory may show up in several ways in existing
LIGO–Virgo searches. In each case there is, in principle,
a smoking gun which allows the signal to be distinguished
from other types of sources. Here, it is argued that a new
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FIG. 2. Left–hand panel: the frequency–domain power spectrum of the scalar field σ ≡ rϕ at the extraction sphere and
1 light second further out; the exponential decay of frequencies f <ω∗/(2π) can be clearly seen. This simulation was performed
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dedicated program to search for ST core collapse signals
is not needed; however, the results of this work should be
kept in mind in analyzing results from existing searches.

Monochromatic searches – The highly dispersed signal
(described by Eq. (11), see right–hand panels of Fig. 2)
at large distances can last for many years and is nearly
monochromatic on timescales of . 1 month. Quasi-
monochromatic GWs with slowly evolving frequency may
also be generated by rapidly rotating non-axisymmetric
neutron stars; the scalar signals described in this letter
can be distinguished from neutron stars by the scalar po-
larisation content and the highly characteristic frequency
evolution described in Eq. (10).

These signals may be detected by existing monochro-
matic searches and allow for the determination of the
scalar mass from the frequency change ḟ . The signals
may show up in all–sky searches, however greater sensi-
tivities can be achieved via directed searches at known
nearby supernovae (all–sky searches achieved sensitiv-
ities that constrain h.9.7×10−25[29], whereas model-
based, directed searches at a supernova remnant have
achieved sensitivities of h.2.3×10−25 [30] at frequencies
∼150 Hz). Methods to detect signals of any polarization
content have recently been presented in [31]; note that in-
terferometers are a factor ∼ 2 less sensitive to scalar than
tensor GWs. A directed search should begin within a few
months to years of the supernova observation and may
last for decades with sensitivity improving as time−1/2

(see the amplitude as a function of time in Fig. 2). In
fact, the amplitude can remain at detectable levels for
so long that directed searches aimed at historical nearby
supernovae (e.g. SN1987A1) may be worthwhile; a non-
detection from such a search can place the most stringent

1 For µ = 10−14 eV, for example, we obtain for SN1987A a fre-
quency Ω/(2π) ≈ 128 Hz and rate of change Ω̇/(2π) ≈ 2 Hz/yr,
using distance D := r − rex = 51.2 kpc and time t−D = 30 yr.

constraints to date on certain regions of the massive ST
parameter space, (µ, α0, β0).

In any monochromatic search there would be two
smoking gun features indicating an origin of hyper-
scalarized core–collapse in massive ST theory: the scalar
polarization content, and the long signal duration with
gradual frequency evolution according to Eq. (10). Our
simulations suggest that the intrinsic amplitude of the
scalar field is insensitive to α0, β0 and µ over wide pa-
rameter ranges. However, the GW strain scales linearly
with the coupling; h∝α0ϕ. Extrapolating the results in
Fig. 2 suggests that if a supernova at 10 kpc were to be
observed and followed up by a directed monochromatic
search by aLIGO at design sensitivity, the coupling could
be constrained to α0.3× 10−4 (assuming no signal was
in fact observed) which compares favorably with the im-
pressive Cassini bound in the massless case [15].

Stochastic searches – As shown above, stellar core col-
lapse in massive ST theory can generate large amplitude
signals, allowing them to be detected at greater distances.
However, the signals propagate dispersively, spreading
out in time and developing a sharp spectral cut-off at
the frequency of the scalar mass. The long duration sig-
nals from distant sources can overlap to form a stochastic
background of scalar GWs with a characteristic spectral
shape around this frequency. A detailed analysis of this
stochastic signal covering a wider range of ST parameters
and progenitor models will be presented in [32].

Burst searches – If the scalar field is light (µ.10−20eV)
then signals originating within the galaxy will not be
significantly dispersed (e.g. the spread in arrival times
across the LIGO bandwidth, (10 – 103) Hz, for a source
at 10 kpc is .1 s). These short duration, burst-like scalar
GW signals may be detected using strategies similar to
those used to search for standard core collapse super-
novae in GR. However, for these light scalar fields the ob-
servational constraints on the coupling constants α0 and
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β0 rule out the hyper-scalarized signals shown in Fig. 1
and the amplitudes are similar to those reported in [23].

Discussion – The main results of our work are the
following points. (i) Weaker constraints on the coupling
parameters α0, β0 in ST theory with scalar masses µ &
10−15 eV allow for scalarization in stellar core collapse
orders of magnitude above what has been found in mass-
less ST theory. The scalar signature is rather insensitive
to the EOS parameters and varies only weakly with the
ST parameters α0 and β0 for sufficiently negative β0. (ii)
The strong scalar GW signal disperses as it propagates
over astrophysical distances, turning it into an inverse
chirp signal spread out over years with a near monochro-
matic signature on timescales of ∼ 1 month. (iii) We
identify three existing GW search-strategies (continuous
wave, stochastic and burst searches) that have the capac-
ity to observe these signals for galactic sources or infer
unprecedented bounds on the massive ST theory’s pa-
rameter space through non-detection.

The dispersion of the signal has two significant conse-
quences. (1) While the number of individually observable
events may not change significantly from pure GR ex-
pectations (a few per century, largely in the Milky Way
and Magellanic Clouds), each event remains visible for

years or even centuries, vastly increasing the number of
sources visible now. (2) The signal to be detected is
largely insensitive to details of the original source. In-
stead, it is mainly characterized by the overall magnitude
of the scalarization and the ST parameters, most notably
the mass µ. We tentatively conjecture that other promi-
nent astrophysical sources, such as NS binary inspiral
and merger, may result in a similar inverse-chirp imprint
on the GW signal in massive ST theory. A natural ex-
tension of our work is the exploration of other theories of
gravity with massive degrees of freedom (e.g. [33]), but
the results reported here already demonstrate the quali-
tatively new range of opportunities offered in this regard
by the dawn of GW astronomy.
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