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Controlling complex nonlinear networks is largely an unsolved problem at the present. Existing
works focused either on open-loop control strategies and their energy consumptions, or on closed-loop
control schemes with an infinite-time duration. We articulate a finite-time, closed-loop controller
with an eye toward the physical and mathematical underpinnings of the trade-off between control
time and energy as well as their dependence on the network parameters and structure. The closed-
loop controller is tested on a large number of real systems including stem cell differentiation, food
webs, random ecosystems, and spiking neuronal networks. Our results represent a step forward
in developing a rigorous and general framework to control nonlinear dynamical networks with a
complex topology.

Recent years have witnessed a growth of interest in
controlling complex networks. A vast majority of the
existing works in this area dealt with the controllability
and control of linear dynamical networks [1–25, 65, 66].
Controlling complex networks with nonlinear dynamics
has been limited to brute force strategies such as local
pinning [28–31] or to specific systems exhibiting a sim-
ple kind of multistability [32–36]. Most existing methods
of controlling nonlinear networks were of the open-loop
type, i.e., one selects a suitable subset of nodes and ap-
plies pre-defined control signals or parameter perturba-
tions, which are state independent, to drive the system
from an initial state to a desired target. It is, however,
difficult to formulate a general and robust open-loop con-
trol framework. It is thus of interest to investigate closed-
loop control for complex nonlinear dynamical networks,
in which a pre-designed feedback loop generates control
signals according to the instantaneous state of the sys-
tem. Closed-loop control thus provides a theoretically
relevant and a significant alternative to controlling com-
plex nonlinear networks.

In controlling chaos in low-dimensional dynamical sys-
tems, both open- and closed-loop controls were exten-
sively investigated. The OGY (Ott-Grebogi-Yorke) [37]
principle, in which small, deliberate, and time dependent
perturbations calculated from measured time series are
applied to a parameter or a dynamical variable to keep
the system in the vicinity of a target periodic orbit, be-
longs to the open-loop category. Because of the hallmark
of chaos, i.e., sensitive dependence on initial conditions,
the control perturbation can be small and there is great
flexibility to switch the target orbit. However, real-time
observations of the system are needed and control can
be fragile to external disturbances. The method of Pyra-
gas [38, 39] is a closed-loop type of control in which a de-

layed feedback term is added to the system equations. It
does not require real-time observation and analysis of the
system so that experimental implementation is greatly fa-
cilitated and control can be robust against noise, but the
time for control realization is infinite and control flexibil-
ity is limited. The developmental history of the field of
chaos control provides another motivation for us to con-
sider frameworks as alternative to open-loop methods for
nonlinear network control.

In this Letter, we articulate and analyze a global,
finite-time and closed-loop control framework for com-
plex nonlinear dynamical networks. To ensure that our
framework is physically significant, we focus on the con-
trol energy and the time required to achieve control, and
investigate their trade-off. We study how network pa-
rameters and structure affect the control time and energy,
and test the control framework using a variety of real bio-
physical systems including stem cell differentiation, food
webs, random ecosystems, and neuronal networks. An-
alytically, we derive rigorous upper bounds for both the
control energy and time. These results suggest that to
develop closed-loop control with optimized control time
and energy not only is fundamental to the network con-
trol field, but also has applied values.

We consider nonlinear dynamical networks described
by ẋi = f(xi) +

∑N
i=1 cijΓxj(t) + u[x(t)]Bi, 1 ≤ i ≤ N ,

where N is the network size, xi = [xi1, · · · , xid]> ∈ Rd
denotes the d-dimensional state variable of the i-th node,
x represents the state variables of the whole network,
f : Rd → Rd is a nonlinear velocity field governing
the nodal dynamics and satisfying ‖f(x)‖ ≤ l‖x‖ or
|x>f(x)| ≤ l‖x‖ (∀x ∈ Rd) with a positive constant l,
C = (cij) ∈ RN×N is the coupling matrix determined
by the network structure, Γ ∈ Rd×d describes the in-
ternal coupling configuration at each node, u[x(t)] =
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FIG. 1. Physical underpinning of our closed-loop feedback
controller. (a) System moving according to the potential
function EL,Fp (dashed curves) underlying closed-loop feed-

back controllers uL,Fi , where uLi specifies a linear feedback
controller that acts outside of the unit sphere, and uFi de-
notes a general feedback controller that is activated once the
system is inside the unit sphere. (b) Controlled system trajec-
tory in the phase space by uSi , where a control switch occurs
when the system crosses the unit sphere ‖x‖ = 1.

[ui(t)]1≤i≤M ∈ Rd×M (M ≤ N) is the closed-loop con-
trol protocol to be designed, and Bi = [bi1, · · · , biM ]> ∈
RM (bim = 0, 1) characterizes the driving by the con-
troller u to the i-th node. Going beyond the existing
works on open-loop control of complex networks, where
the goal is to drive the system to an instantaneous state,
we set the control target to be an unstable steady state,
which, for mathematical convenience, is assumed to be
xi = 0 for all i. For any nontrivial target state, a direct
translation can be used to transfer the state to xi = 0.

For a general nonlinear dynamical system, a straight-
forward approach to realizing closed-loop control [40–
42] is to set each component of u as ui = −kxi , uLi
(1 ≤ i ≤ M ≤ N). In principle, this linear feedback
controller of strength k is able to steer the dynamics to
converge to the target xi = 0, but the time required for
convergence is infinite. We thus seek alternative meth-
ods [43–46] to achieve finite control time and robustness
against disturbances. A typical form of the feedback con-
troller is ui = −ksig(xi)

α , uFi , which can drive the
system to xi = 0 for all t ≥ TFf with TFf < ∞, where

sig(xi)
α = [sign(xi1)|xi1|α, · · · , sign(xid)|xid|α]>, sign(·)

is a sign function, k is the control strength, and α ∈ (0, 1)
is the steepness exponent. The mathematical underpin-
ning of the controller uFi lies in that the non-Lipschitzian
| · |α at xi = 0 violates the solution uniqueness of the sys-
tem of coupled differential equations.

To gain physical insights into the control process, we
consider the potential function: EL,Fp (xi) =

∫ xi

0
uL,Fi dxi,

which can be determined from the closed-loop feedback
controller. We find that uLi is located higher than uFi for
|xi| > 1, while the opposite occurs for |xi| < 1, as shown
in Fig. 1(a). On the potential landscape, the controlled
system trajectory can be regarded as a particle moving
along some optimal path towards the target xi = 0, the

minimum of the potential. The particle experiences a
stronger potential force along a path determined by uLi
(uFi ) for |xi| > 1 (|xi| < 1). The maximum force oc-
curs for |xi| < 1 and α → 0. In this case, uFi |α=0 cor-
responds to a double-valued and closed-loop controller,
similar to the classical bang-bang control [47]. The basic
principle is then to design two controllers in complemen-
tary regions of the phase space. This consideration leads
us to propose the following global, compound controller:
ui = uFi IU+uLi IUc , uSi , where 1 ≤ i ≤M , the unit ball
is defined by U = {‖x‖ < 1}, x = [x>1 , · · · , x>N ]>, ‖·‖ de-
notes an appropriate norm of the underlying vector, Uc is
the complement of U , and I is the indication function for
a given subscript set. The norm can be taken as the Lp
or L∞. To be representative and without loss of gener-
ality, we study the L2 norms. As shown in Fig. 1(b), the
compound controller uSi switches from uLi to uFi when
the system enters the unit sphere.

We now prove that the controller uS = [uSi ]1≤i≤M en-
ables finite-time control, and provide an estimate of TSf ,
the time required to achieve control. To be concrete,
we set M = N , bii = 1, and bim = 0 for i 6= m. As
shown in Fig. 1(b), for x(0) 6∈ U , the control protocol is
set as uSi = uLi . A direct calculation gives d‖x(t)‖2/dt ≤
−2(k−l−ηmax)‖x(t)‖2, where ηmax is the maximal eigen-
value of the matrix H ≡

[
(C ⊗ Γ)> + C ⊗ Γ

]
/2, and

⊗ represents the Kronecker product for matrices. Set-
ting k > l + ηmax when the networked system is out-
side of the ball U , we get the time instant t∗ such that
x(t)|t=t∗ hits the sphere of U with t∗ ≤ [ln ‖x(0)‖]/ρ and
ρ , k − l − ηmax > 0. Once the orbit x(t) enters U after
t∗, because of the dissipation inside U (see Supplemen-
tary Information [48]), the system will never leave it so
that uSi becomes uFi with the corresponding value k for
t > t∗, as shown in Fig. 1(b). Dynamical systems the-
ory [48] stipulates that d‖x(t)‖2/dt ≤ −2ρ‖x(t)‖1+α for
t ≥ t∗ and that x(t) ≡ 0 for all t ≥ t∗ + 1/ρ(1 − α).
An analogous analysis applies to the case x(0) ∈ U with
uSi = uFi . The upper bound for TSf is then given by

T
Sup

f =

{
1
ρ

[
ln ‖x(0)‖+ 1

1−α

]
, x(0) 6∈ U ,

‖x(0)‖1−α 1
ρ(1−α) , x(0) ∈ U ,

(1)

with the condition ρ > 0. We see that, for given values of
α and x(0) as well as specific network dynamics with l, C
and Γ, the estimation (1) is on the order O(1/k), where
O(1) is a positive and bounded quantity. Accordingly,
uS with a larger value of k can expedite control.

For our controller uS , the required energy cost is [7]

ESc =
∫ TS

f

0

∑N
i=1 ‖uSi (t)‖2dt. A lengthy calculation [48]

leads to the following upper bound for the energy cost

ESup
c =

{
k2 1

2ρ

[
1− ‖x(0)‖−2 + 2ζ

1+α

]
, x(0) 6∈ U ,

k2 ζ
ρ(1+α)‖x(0)‖1+α, x(0) ∈ U ,

(2)

where ζ = (Nd)1−α. Since ρ ∼ k, ESc is bounded from
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above by a quantity on the order of O(k). This indi-
cates that, for a given network and given values of α and
x(0), increasing k will raise the energy cost. In addition,
for fixed values of α and x(0), if k is sufficiently large,
increasing l or ηmax will lead to larger upper bounds for
both the control time and energy. For example, for an un-
weighed and undirected network with Γ being an identity
matrix, the quantity ηmax becomes λmax(C), so increas-
ing the maximum eigenvalue would demand more time
and energy for the uS driven control to be successful.

Using ∂α
(

lnT
Sup

f

)
= ln ‖x(0)‖−1+1/(1−α), ‖x(0)‖ ≤

1, and α ∈ (0, 1), we can prove that T
Sup

f is an increasing

function of α, i.e., ∂α(T
Sup

f ) > 0, implying that control
can be expedited by using a smaller value of the steep-

ness exponent α. In addition, the condition ∂α(ESup
c ) < 0

implies that smaller values of α lead to higher energy
costs. The dependence of the energy on α is consis-
tent with the intuitive, potential-landscape based phys-
ical scenario of control. These results reveal a trade-off
between the control time and energy cost for our con-
troller uS with respect to variations in α or k. For exam-
ple, consider the index Jγ,β(k) = γbTSf c+ βbESc c, where
γ and β are adjustable weights determined by the spe-
cific system and b·c is a normalization function. Since
Jγ,β(k) ∼ O(1/k) + O(k), there must exist a number
kc & l + ηmax at which the quantity Jγ,β reaches its
minimum. The optimal control strength is thus given by
k = kc in the sense that control can be achieved in less
time with lower energy cost in terms of the index Jγ,β .

We demonstrate the working of our optimal closed-
loop controller uS , its superior performance as compared
with the conventional controllers uL = [uLi ]1≤i≤M , and
the corresponding analytic bounds of the control time
and energy, using a number of representative real-world
complex nonlinear dynamical networks.

Controlling stem cell fate. We demonstrate that our
closed loop controller can drive two different cell fates to
the critical expression level to enable stem cells to remas-
ter their cell fate for cellular differentiation. Specifically,
we consider the following network model for hematopoi-
etic stem cells [49], which describes the interaction be-
tween two suppressors during cellular differentiation for
neutrophil and macrophage cell fate choices [50, 51]:
ẋ1 = 0.5 − x1, ẋ2 = 5x1/[(1 + x1)(1 + x43)] − x2,
ẋ3 = 5x4/(1 + x4)(1 + x42)− x3, ẋ4 = 0.5/(1 + x42)− x4,
ẋ5 = [x1x4/(1 + x1x4) + 4x3/(+x3)]/(1 + x42) − x5,
ẋ6 = [x1x4/(1 + x1x4) + 4x2/(1 + x2)]/(1 + x43) − x6,
where x2,3 are the expression levels of two lineage-specific
counter-acting suppressors Gfi-1 and Egr(1,2), which are
activated by their transcription factors x1,4 and simulta-
neously regulate the downstream genes x5,6, respectively.
As specified in Fig. 2, the system has three steady states:
U1,2,3, where U1,3 correspond to different cell fates and
are stable, and U2 represents a critical expression level
connecting the two fates and is unstable. Figure 2(a)
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FIG. 2. Controlling a cellular differentiation network model
from the steady state U1 = (0.5, 1.66, 0.03, 0.06, 0.02, 2.53)
or U3 = (0.5, 0.19, 1.66, 0.50, 2.69, 0.10) to the steady state
U2 = (0.5, 0.75, 1.05, 0.38, 1.69, 0.83). (a) Uncontrolled dy-
namics [for t ∈ [0, 30)] and controlled dynamics (for t ≥ 30)
for the expression levels of suppressor x2, where k = 10 and
α = 0.5 when uS is switched on. (b) For α = 0.5, control time
versus k for the two controllers uS,L. (c) For k = 10, control
energy versus α for controller uS .

shows that initially x2 of the uncontrolled system con-
verges to the stable steady state U1 or U3. From t = 30,
we apply the finite time controller uS = uFIU + uLIUC

with U = {‖x − U2‖ < 1}, uL = −k(x2 − U22) and
uF = −k · sign(x2 −U22) · |x2 −U22|α to x2, which is the
only variable experimentally accessible [49]. Here, U22 is
the second component of U2. The controlled system in
either of the stable states is driven rapidly to the crit-
ical state U2, indicating that a finite-time, closed-loop
intervention can make the stem cells remaster their cell
fate for cellular differentiation. Further, for sufficiently
strong control strength k, the converging time with the
controller uS is shorter than that with uL, as shown in
Fig. 2(b). Figure 2(c) shows, for a fixed value of k, the
required control energy decreases with the steepness ex-
ponent α, as predicted by our analysis.

Controlling nonlinear ecosystems on food-web net-
works. The nonlinear ecological model is described by
ẋi = xi(1 − xi/Ki)(xi/Ai − 1) , f(xi), where xi is the
species abundance, f characterizes the logistic growth,
and the carrying capacity is Ki. The model includes
the Allee effect, where the species is destined for extinc-
tion if its abundance is lower than a threshold value
(xi < Ai) [52–54]. We demonstrate that our control
method can successfully restore the system out of ex-
tinction to a sustainable state. In particular, for each i,
the model has two stable steady states (xi = 0, Ki, cor-
responding to species extinction and capacity overload,
respectively), and one unstable steady state (xi = Ai).
To prevent the system from evolving into one of the stable
steady state, we choose the control target to be xi = Ai
for all i that represents restoration or sustainment of
species to a state with moderate abundance. The cou-
pling matrices C are constructed from a large number
of real food-web networks [48]. For the three controllers

uS,F,L, we calculate the respective control time TS,F,Lf re-
quired to drive the system into the neighborhood of the
target: |xi(t) − Ai| ≤ 10−4, 1 ≤ i ≤ N . The controller
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FIG. 3. Dependence of optimal control strength or steep-
ness exponent on preferential weights. For the Florida food
web, optimal locations of the control indices Jγ,β(k)|α=0.1 and
Jγ,β(α)|k=10 versus the weights, as indicated by the markers
along the horizontal axis.

uS results in the least control time (see Tab. S1 in [48]
for detailed values from all 22 food-web networks).

To verify our analytic prediction of optimal control
through the control indices Jγ,β , we use the Florida
food web [48] and calculate the indices as a function of
k or α. Figure 3 shows that the optimal values of kc
and αc depend on the combination of the preferential
weights (γ, β), which agree well with the respective ana-
lytic results. Simulations further reveal that the optimal
value kc is more sensitive to the choice of the preferential
weights than αc, which is reasonable as decreasing the
control time tends to make the value of kc larger.

Controlling complex random ecosystems. Consider a
general ecosystem described by ẋ = Cx, where each
species xi is one-dimensional, C = (cij)N×N describes
the random mutual interactions with cii = −r, and
N is the population size. Three types of random ma-
trices C were studied extensively, which correspond to
three typical ecosystems: (a) May’s classic ecosystem [55]
where, with probability P , the off-diagonal elements cij
are set as mutually independent Gaussian random vari-
ables N (0, σ2

0) and the probability for the elements to be
zero is (1−P ), (b) a mixed ecosystem of competition and
mutualism [56] where the off-diagonal elements cij and
cji have the same sign, which are drawn from the dis-
tribution (±|Y|,±|Y|) with probability P and are zero
with probability (1− P ), and (c) the predator-prey (PP)
ecosystem [56] where cij and cji have the opposite signs
and are from the distribution (±|Y|,∓|Y|). As either N
or the variance of C’s elements increases, all three ecosys-
tems eventually become unstable, reflecting the instabil-
ity of certain steady state in the original ecosystem from
which the linear random system was derived [55, 56].

We employ uS to control the ecosystems, which be-
comes a particular case of our general nonlinear network
control framework with l = 0, Γ = 1, bii = 1 and all other
bim = 0. To achieve finite-time control, we estimate the
maximal eigenvalue ηmax of H = (C> + C)/2 (see SI).
For May’s classic ecosystem, the well-known semicircle
law for random matrices stipulates that H’s eigenvalues
are located in

[
−
√

2NPσ0− r,
√

2NPσ0− r
]

as N →∞
(SI). According to Eq. (1), to realize finite-time control
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FIG. 4. For May’s classic ecosystems, the probability of
successful control versus k (a), where the vertical dashed line
corresponds to ηmax, N = 250, P = 0.25, σ0 = 1, r = 1,
and α = 0.6, and required control time cost (b) and energy
cost (c), respectively, with the increase of N for k = 1.1ηmax.

requires k > ηmax =
√

2NPσ0 − r (Condition-A). As
shown in Fig. 4(a), successful control is achieved for suf-
ficiently large values of k. However, from the estimates
of the control time and energy [Eqs. (1) and (2), respec-
tively], we see that, for a fixed large value of k, an increase
in either N or σ0 slows down the control and consume
more energy, eventually violating Condition-A and caus-
ing the control to fail, as shown in Figs. 4(b)-4(c). While
the controller uS requires the least control time among
the three available controllers, for large system size the
corresponding energy cost is not necessarily minimum.

For the mixed ecosystem with Y ∼ N (0, σ2
0), from

H’s eigenvalues distribution obtained in [48], we have
k >

√
2NP (1 + 2/π)σ0 − r (Condition-B) that ensures

finite-time control in the probabilistic sense. Similarly
for the PP system, we require k >

√
2NP (1− 2/π)σ0−r

(Condition-C). Overall, the Conditions A-C reveal a hier-
archy where the PP, May’s classic, and mixed ecosystems
require the weakest, intermediate, and strongest control
strength k. The control time for the three systems can be
made finite and identical because the respective choices
of the k value can result in the same value of ρ in Eq. (1).
In spite of this, the ordering of the control energy for the
three types of ecosystems cannot be altered because k
appears still in Eq. (2) in addition to ρ.

Akin to the previous example of controlling stem cell
fate via only one suppressor, we apply our finite-time
controller to different numbers of species in the ecosystem
with an undirected scale-free coupling matrix C, which
reveals a high flexibility of our controller (see [48]).

To summarize, we develop a closed-loop control frame-
work for nonlinear dynamical networks to drive the sys-
tem to a desired unstable steady state in finite time and
with predictable energy. Because of the closed-loop na-
ture and high flexibility of the controller, it is suitable
for experimental control of nonlinear networks. We ob-
tain physical and mathematical understandings of the
trade-off between control time and energy. Our closed-
loop controller is also effective for realizing synchroniza-
tion in nonlinear neuronal networks (see [48]). While
the issue of optimal energy associated with closed-loop
control and single- or two-layer structure has been inves-
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tigated [57, 58], prior to our work a closed-loop control
scheme for nonlinear dynamical networks with both op-
timal time and energy had not been achieved. Our work
provides a base for developing a general, physically real-
izable closed-loop control scheme for complex nonlinear
networks with completely unknown steady states.
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