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A Mueller tensor mathematical framework was applied for predicting and interpreting 
the second harmonic generation (SHG) produced with an unpolarized fundamental beam. 
In deep tissue imaging through SHG and multiphoton fluorescence, partial or complete 
depolarization of the incident light complicates polarization analysis. The proposed 
framework has the distinct advantage of seamlessly merging the purely polarized theory 
based on the Jones or Cartesian susceptibility tensors with a more general Mueller tensor 
framework capable of handling partial depolarized fundamental and/or SHG produced. 
The predictions of the model are in excellent agreement with experimental measurements 
of z-cut quartz and mouse tail tendon obtained with polarized and depolarized incident 
light. The polarization-dependent SHG produced with unpolarized fundamental allowed 
determination of collagen fiber orientation in agreement with orthogonal methods based 
on image analysis. This method has the distinct advantage of being immune to birefrin-
gence or depolarization of the fundamental beam for structural analysis of tissues. 

 
 

Second harmonic generation (SHG) is a second 
order nonlinear optical (NLO) process allowed for 
structures without an inversion center.  The polari-
zation-dependence of SHG provides rich informa-
tion on orientation and arrangement of local struc-
tures, as demonstrated for characterization of bios-
tructures[1-4], protein crystals[5], and active phar-
maceutical ingredients[5,6]. However, structural 
information is routinely lost in measurements de-
signed to take advantage of the increased penetra-
tion depth of nonlinear optical interactions. In 
beam-scanning instruments, image contrast in SHG 
is generally retained in turbid media for much 
greater depths than analogous linear interactions [7-
9]. However, the native turbidity and/or birefrin-
gence of biological media has the potential to com-
plicate polarization dependent measurements 
through partial or complete depolarization of the 
incident and/or detected light.  

Several studies have considered the effects of 
partial depolarization in polarization-dependent 
NLO imaging via the cumulative effects of scatter-
ing, birefringence, and linear/circular 
dichroism[3,4,10]. Optical clearing mitigates the 
effects of scattering by refractive index 
matching[11]. Careful bookkeeping of polarization-
state changes has been used to remove bias in re-

covered tensor elements from polarization resolved 
SHG microscopy at tissue depths of 100 
µm[3,4,10]. However, such methods do not account 
for the influence of depolarization arising from he-
terogeneity within the sample during propagation to 
the object plane. More recently, Mueller tensor me-
thods have been introduced for quantitatively un-
derstanding and correcting for depolarization ef-
fects in nonlinear optical measurements. Barzda 
and coworkers have introduced the Stokes-Mueller 
framework for the theoretical description of nonli-
near optical polarimetry based on a “super-Mueller 
matrix” approach originally developed by Mclain 
and Shi[12-14]. This approach has been used to 
study crystalline and collagen fibril organization 
for polarization dependent measurements.[15,16] 
However, a large number of observables with many 
different incident polarization states are required in 
order to populate all 36 unique elements of the su-
per-Mueller matrix. In a recent complementary 
framework,[17] the Mueller tensors in partially de-
polarizing assemblies were greatly simplified by 
directly bridging Jones and Mueller tensors. The 
role of partial depolarization can in principle be 
incorporated by a single additional adjustable pa-
rameter relative to analogous measurements in non-
depolarizing assemblies.  



 2

In principle, linear optical interactions can be 
used to describe much of the depolarization effects 
in nonlinear optics. In SHG microscopy of turbid 
media, the collective process can be conceptually 
broken down into three key steps: i) propagation of 
the fundamental beam through the turbid matrix to 
the object plane, ii) production of SHG by the ob-
ject of interest by the Mueller tensor ( )2M , and iii) 
propagation of the frequency-doubled light to the 
far-field detector. In steps i) and iii), partial depola-
rization of the incident and detected beams can in 
principal be handled by conventional linear Mueller 
matrices. Step ii) cannot be described by either li-
near Mueller matrix transformations or considera-
tions of conventional nonlinear polarizability based 
on Jones and/or Cartesian tensors.  

In this letter, the process of SHG driven by unpo-
larized light was considered both theoretically and 
experimentally, then applied to recover both polar 
and azimuthal orientation of collagen fibrils. In a 
model system, predictions from a mathematical 
framework connecting Jones and Mueller 
tensors[17] were compared with observations for z-
cut quartz. With this framework in place, polariza-
tion-dependent SHG from partial or complete depo-
larization of the incident beam can be quantitatively 
described using the intuitive Jones tensor.  

In the simplest model for partial depolarization, 
the fundamental light reaching the object plane is 
considered as a linear combination of a purely de-
polarized fraction and a residual purely polarized 
component. The purely polarized component can be 
described by Jones tensor description for SHG to 

generate a Jones vector 
2

e
ωv

 for the polarization-
dependent SHG. The Jones vector can be connected 
to the more general Stokes vector with a transfor-

mation matrix A , such that ( )2 22s A e e
ω ωω = ⋅ ⊗

v vv .  

In linear optics, connecting the Mueller matrices 
to Jones matrices provides an intuitive framework 
for interpreting polarization propagation. Using the 
preceding relationship allows the 4×4 Mueller ma-
trix M to be written in terms of the 2×2 Jones ma-
trix J: ( ) 1M A J J A−= ⋅ ⊗ ⋅  . 

In the theoretical framework developed previous-
ly[17], these connections between Mueller and 
Jones matrices in linear optics were shown to be 
directly extendable to nonlinear optics, in which the 
elements of the 4×4×4 Mueller tensor describing 
SHG ( )2M  driven by partially or fully depolarized 

incident light are connected back to combinations 
of simpler 2×2×2 Jones tensor elements ( )2

Jχ  using 
the matrix A [Eq. (1) and Supplemental Material, 
Eqs. (S6-S9)][17,18].  

         ( ) ( ) ( )( )2 2 * 2 1 1:J JM A A Aχ χ − −= ⋅ ⊗   (1) 

The detected Stokes vector depends on 16 prod-
ucts of Jones tensor elements, which are combina-
tions of Jones tensor elements contributing to the 
SHG produced with unpolarized incident light. The 
Stokes vector for the fraction of SHG produced 
from a fully depolarized beam maps onto four 
Mueller tensor elements: 000M , 110M , 200M , and 

300M [Supplemental Material Eqs. (S1-S5)]. As 
shown in Eq. (2), the nonzero Jones tensor ele-
ments can be written in four groups, with the first 
index in each of the ijkχ  tensor elements corres-
ponding to the electric field component produced 
by the nonlinear optical process [Supplemental Ma-
terial, Eqs.(S10-S14)].  Zero indicates the laborato-
ry horizontal axis and 1 indicates the laboratory 
vertical axis (Section 2.2 of the Supplemental Ma-
terial).  
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(2) 

The nonzero Jones tensor elements can be further 
reduced by considering the symmetry within the 
local-frame systems. For the specific case of colla-
gen (or any uniaxial assembly), the nonzero ele-
ments within the local frame are  ' ' 'z z zχ , ' ' 'z x xχ =

' ' 'z y yχ , ' ' 'x x zχ = ' ' 'x z xχ and ' ' 'x y zχ = ' ' 'x z yχ = ' ' 'y x zχ− =

' ' 'y z xχ− , with the z'-axis defined as the unique fiber 
axis. From quantum chemical calculations, the 
chiral terms are predicted to be relatively weak in 
collagen performed far from resonance, and disap-
pear by symmetry for fibers aligned within the field 
of view (FoV) [4,19].  

The Jones-Mueller connection enables quantita-
tive prediction of the SHG produced from depola-
rized light using the knowledge of SHG originating 
for pure polarization states. If it is initially assumed 
for illustrative purposes that the local-frame z'-axis 
of collagen fiber axis is oriented coparallel with the 
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laboratory Jones frame horizontal (0) axis and the 
x'-axis is coparallel with the laboratory vertical (1) 
axis, the following nonzero elements remain in the 
laboratory-frame Jones tensor: 000 ' ' 'z z zχ χ= , 

011 ' ' 'z x xχ χ= , and 110 101 ' ' 'x x zχ χ χ= = . For purely 
polarized incident light, the 'z - polarized SHG is 
given by the coherent combination of contributions 
from 000χ   and 011χ , the relative magnitudes and 
phases of which depend on the incident polarization 
state. Similarly, the 'x  - polarized component 
scales with the 101χ   driven by the component of 
the incident light with both 'x  and 'z  polariza-
tions.  

For unpolarized incident light, the SHG can be 
considered as arising from the incoherent summa-
tion of these three contributions [given by the cor-
responding entries in the right-most matrix in Eq. 
(2)]. Introduction of rotation matrices enables anal-
ysis of fibers oriented an arbitrary azimuthal angle 
(φ ). Eq. (2) can be rewritten as Eq. (3), which is a 
simplified form of Eq. (S14).  The rotation opera-
tions can be applied to either the Mueller tensor as 
shown in Eq. (3) or to the Kronecker product of 
Jones tensors (detailed in Supplemental Material). 
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 (3) 

Consistent with previous reports[3-5,15] for z-cut 
quartz and collagen far from resonance, Eq. (3) can 
be simplified by making the approximation of 

' ' ' ' ' 'z x x x x zχ χ≅  and rewritten with two parame-

ters: the azimuthal rotation angle φ  and a defined 

ratio ' ' ' ' ' 'z z z z x xρ χ χ≡ . 

( ) ( ) ( )
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  (4) 

While Eqs. (3) and (4) are derived under the as-
sumption that sample is aligned within the FoV 
with polar tilt angle of / 2π  and ρ  equal to the 
local frame ratio given above, the same tensor ele-
ments are also present for collagen with tilt angles 
other than / 2π  (neglecting relatively weak chiral-
specific contributions). In those cases, ρ equals to 

the ratio of projected ' ' 'z z zχ  and ' ' 'z x xχ   within the 

FoV, defined as /XXX XYYχ χ  (detailed in Supple-
mental Material). To avoid confusion in the later 
discussion, lρ  is defined as the local frame tensor 
ratio with tilt angle / 2θ π= , and ρ as the meas-
ured laboratory-frame ratio /XXX XYYχ χ  for any 
arbitrary tilt angle θ . 

The detected SHG intensity after a post sample 
polarizer at angle polφ  can be calculated based on 

the Stokes vector, with 0s  normalized to unity 
through the proportionality constant C. 

( ) ( )2
0 1 2( ) cos 2 sin 2

2pol pol pol
CI s s sω φ φ φ⎡ ⎤= + −⎣ ⎦   (5) 

Combining Eqs. (4) and (5), the measured labora-
tory-frame ratio ρ  can be determined by a linear 
fit to the measured intensities based on Eq.(6). 

( ) ( ) ( ) ( )2 22 3 1 cos 2 2
8pol pol
CI ω φ ρ ρ φ φ⎡ ⎤= + + − −
⎣ ⎦

  (6) 

To evaluate this theory, SHG measurements were 
performed with a custom-built microscope de-
scribed in detail previously[5]. For measurements 
of SHG generated from a depolarized incident 
beam, a depolarizer (DPP-25B, Thorlabs) was 
placed in the collimated path (Fig 1). A Glan-
Taylor polarizer was inserted in a rotation stage in 
front of the detector. SHG intensity was recorded 
following mechanical rotation of the polarizer from 
0 to π  rad ( polφ ) with 60 intervals illuminated 
with both a purely polarized and a depolarized in-
cident beam. 

 
Fig 1. SHG transmittance microscope capable of 
delivering both a purely polarized and a depola-
rized fundamental beam.  

SHG produced from z-cut quartz was measured 
to assess the predictions for a model system with 
well-established nonlinear optical properties exhi-
biting no birefringence for light propagating paral-
lel to the z-axis. Polarized SHG produced by z-cut 
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quartz from purely vertically polarized incident 
light was shown in Fig 2. The SHG intensities inte-
grated over the whole FoV was fit to Eq. (7) (de-
tailed in the Supplemental Material with Ref. [20]), 
relating to the detected polarization angle ( polφ , Fig 
2A) or the quartz orientation angle (azimuthal angle 
φ , Fig 2B). Good agreement between the fitted 
curve (green lines) and experiment SHG intensity 
(blue markers) was observed, with the three-fold 
higher periodicity in azimuthal angle in Fig 2B is a 
consequence of the three-fold rotational symmetry 
of z-cut quartz.  

         ( ) ( )2 2, sin 3pol polI Cω φ φ φ φ= ⋅ −   (7) 

For SHG produced by z-cut quartz for a depola-
rized incident beam, the ratio ρ = -1 by symmetry, 
such that Eq. (5) predicts the production of SHG 
intensity that is completely independent of both the 
polarizer rotation angle polφ and quartz orientation 

angle φ . This outcome is consistent with the pro-
duction of entirely unpolarized SHG from z-cut 
quartz, with intensity equal to half the amplitude 
observed from the purely polarized source. The 
theoretical result is shown in purple lines in Fig 2, 
together with the experimental observations (red 
dots) as polφ  is varied. The predications are in ex-
cellent agreement with the theoretical prediction. It 
is worth emphasizing that the theoretical trace is 
not a fit to the unpolarized data, but rather the pre-
dicted behavior with no adjustable parameters 
based on the observed trends for a polarized source. 
Analogous measurements performed as a function 
of φ  with a fixed detector polarization rotation an-
gle polφ and z-cut quartz rotation showed similar 
agreement between theory and experiments (Fig 
2B). Although the depolarized result yields a slight 
offset from predictions based on the polarized mea-
surements, the overall independence of the SHG 
measured through a fixed polarizer as a function of 
the quartz rotation angle was consistent with the 
expectations from the theoretical predictions. The 
observed offset was tentatively attributed to uncer-
tainty in the amplitude determined from the fits of 
the traces observed with a purely polarized input. 
The excellent overall agreement between theory 
and experiments generally supports the validity of 
the mathematical framework and its approxima-

tions for describing the coherent process of SHG 
driven by partially or wholly depolarized light. 

 
Fig 2. (A) Polarization dependent measurement of 
SHG signal from z-cut quartz at an arbitrary angle 
under (a) vertically polarized and (b) depolarized 
incident light overlay with theoretical (c) fitting and 
(d) prediction. (B) Measurements of horizontally 
polarization SHG signals from z-cut quartz at dif-
ferent azimuthal angle under (a) vertically pola-
rized and (b) depolarized incident light, with theo-
retical (c) fitting and (d) prediction. 

SHG produced from collagen within a longitudi-
nally sectioned mouse tail was also analyzed with 
depolarized incident light. The local fiber orienta-
tions (φ ) and tensor ratios ( ρ ) were then retrieved 
for every SHG-active pixel by fitting the intensity 
trend as a function of φpol described in Eq. (6). 
From the per-pixel fitting, the azimuthal angle of 
collagen was determined at a per-pixel basis for 
each location exhibiting sufficient signal to noise to 
allow statistically significant polarization analysis 
(Fig 3A). Unlike the case for z-cut quartz, the pola-
rization-dependent SHG produced from a depola-
rized fundamental beam generally exhibited SHG 
with strong polarization preferences, consistent 
with Eq. (6) for 1ρ ≠ . A representative fit is 
shown in Fig 3D. 
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Fig 3. Orientation images of the azimuthal angle for 
a single FoV of mouse tail section from (A) the 
pixel-by-pixel nonlinear fit analysis and (B) Orien-
tationJ. Scale bar: 100 μm. (C) The histogram of 
the orientation distribution achieved from pixel-by-
pixel fit and OrientationJ. (D) Nonlinear fitting 
results of depolarized light excitation SHG for sig-
nal random pixel.  

 The local azimuthal orientations of the collagen 
fibers were also independently determined by 
OrientationJ, a plugin for image directional analy-
sis for ImageJ.[21,22] Fig 3A demonstrates the 
intensity-weighted orientation map retrieved via 
pixel-by-pixel nonlinear fit, contrasted with the 
orientation map recovered by OrientationJ in Fig 
3B. Good agreement between the two methods was 
observed for local azimuthal orientations. Fig 3C 
shows an overlay of histogram of orientation angles 
recovered via both methods. Notably, OrientationJ 
assigns orientation based entirely on image analysis 
relying on context from adjacent pixels. As such, 
the two methods for determining azimuthal orienta-
tion (single pixel polarization analysis and contex-
tual image analysis) are orthogonal methods yield-
ing comparable outcomes.  

Several possible explanations may account for 
the subtle but nonzero deviations between fiber 
orientation angles determined by polarization anal-
ysis versus image analysis (OrientationJ). First, the 
depolarizer functions by imposing a sinusoidal 
modulation of the polarization state across the 
physical expanse of the collimated beam. Upon 
passing this beam through the objective, the spatial 
Fourier transform of a sinusoidal modulation re-
sults in a horizontally offset dual-spot point spread 
function within the FoV, which in turn produces a 
double image. The SHG produced from a depola-
rized source should contain equal contributions 
from both foci in order to be considered as genuine-
ly depolarized. Spatial variation across the FoV 
may significantly influence the validity of this as-
sumption, given that the fiber thickness is generally 
small relative to the displacement. Polarization 
analysis performed for both vertically and horizon-
tally aligned collagen regions were compared to 
assess the potential impact of the double-beam in 
polarization analysis. Given that the offset is solely 
along the horizontal axis, perturbations from the 
double-focus should be significantly more pro-
nounced for vertically oriented fibers. From inspec-
tion of the images, comparable deviations were ob-

served for both horizontally and vertically aligned 
fibers, suggesting the absence of obvious systemat-
ic bias from the particular manner in which the 
beam was rendered unpolarized in the present 
study.   

In addition to recovering the azimuthal angle, the 
polarization-dependent SHG generated from an 
unpolarized source also allows recovery of the 
measured laboratory-frame ratio ρ  through Eq.(6), 
with representative images shown in Fig 4A. The 
modal value of 1.69ρ =  (Fig 4C) is consistent 
with several other previous reports[4,23] for mouse 
tail and other collagenous assemblies such as 
chicken wing and human dermis. Deviations be-
tween polarization analysis and image analysis may 
arise from the implicit assumption that the fibers 
exhibit polar tilt angles of π/2, such that the fibers 
are assumed to lie flat within the FoV. In practice, 
any thin section is generally expected to transect a 
given fiber at a nonzero polar angle θ . Whereas 
image analysis methods such as OrientationJ can 
independently inform azimuthal orientation, polar 
tilt remains a challenge. Fortunately, the polariza-
tion-dependent SHG may provide a route for ac-
cessing polar tilt angle, provided the value of ρ can 
be independently measured or assumed.  

 Using literature values for the local-frame ratio 
lρ (i.e., relative to the long-axis of an individual 

collagen fiber), a mathematical relation between 
measured laboratory-frame ratio ( ρ ), the local-
frame ratio lρ , and the polar tilt angle (θ ) was 
derived in Eq. (8) by projecting local tensor ele-
ment onto the lab frame [24] (detailed in Supple-
mental Material).  

3arcsin
3l

ρθ
ρ

⎛ ⎞−= ⎜ ⎟⎜ ⎟−⎝ ⎠
  (8) 

A per-pixel fit was performed to recover a map 
of polar tilt angle θ with the assumption of a local-
frame hyperpolarizability ratio 1.7lρ =  based on 
previously reported values in which the range of 
polar tilt angle at each pixel was determined expe-
rimentally.[4,15] This value of the local-frame ratio 
for collagen fibers is quite similar to the most prob-
able ratio observed experimentally (Fig 4C), con-
sistent with an assembly in which the most proba-
ble collagen orientation is lying flat within the field 
of view. With the assumption of 1.7lρ = , the ob-
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served values of ρ  was used to recover the polar 
tilt angle at each pixel through Eq. (8). The recov-
ered map of polar tilt angle θ  was shown in Fig 4B. 
A significant portion of collagen fibers was tilted 
out of the detection plane (i.e., 1/ 2θ ≠ ). This phe-
nomenon was more obvious in the region where 
collagen fibers bend. The measurements likely con-
tain an implicit bias against tilt angles of  θ ≅ 0, as 
fibers aligned parallel with the optical access are 
symmetry-forbidden for production of coherent 
SHG. The results shown in Fig 4 are largely insen-
sitive to the particular assumed value of lρ , yield-
ing qualitatively similar results when assuming 

1.4lρ = (consistent with other reports for the local-
frame tensor element ratio) [4,15].  

 
Fig 4. (A) The measured laboratory-frame ratio ρ  
images for a single FoV of mouse tail section from 
the per-pixel fit analysis. (B) The polar tilt angle θ  
image recovered from the measured laboratory-
frame ratio ρ for the same FoV with 1.7lρ = . (C) 
The distribution of the ratio ρ , with the maximum 
peak marked at 1.69. Scale bar: 100 μm. 

In summary, the results of this study have intri-
guing implications on polarization-analysis of de-
polarizing systems. A Mueller tensor framework 
was utilized to predict the polarization of SHG sti-
mulated with depolarized light. This framework has 
been verified experimentally with z-cut quartz and 
collagenous tissue under depolarized incident light. 
From a practical standpoint, the intentional use of 

depolarized incident light has the distinct advantage 
of providing measurements that are immune to sub-
sequent depolarization of the fundamental beam. 
Despite the loss of information from scrambling of 
the incident polarization, analysis of collagenous 
tissue with depolarized SHG still allowed determi-
nation of both collagen azimuthal and polar orienta-
tion from the laboratory-frame tensor elements. The 
use of unpolarized incident light may significantly 
simplify polarization analysis in thick tissue sec-
tions for measurement in transmission.  
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