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We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spher-
ical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations
with a negative cosmological constant in five spacetime dimensions and obtain a family of non-spherically sym-
metric solutions, including those that form two distinct black holes on the axis. We find that these configurations
collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require
less mass to collapse within a fixed time.

Introduction.—The effort to understand the dynamics of
gravity in asymptotically anti-de Sitter (AdS) spacetimes is
driven by a series of open questions that has generated in-
tense interest in recent years. As the maximally symmetric
solution of the Einstein equations with a negative cosmolog-
ical constant (Λ < 0), AdS is as fundamental as Minkowski
space (Λ = 0), the non-linear stability of which was estab-
lished by the work of Ref. [1]. Similar stability results
for de Sitter space (Λ > 0) were proven in [2, 3]. A ques-
tion related to stability is that of black hole formation: how
do black holes form in these spacetimes? The answer to
this question has implications for several open problems in
general relativity, including the validity of the weak cosmic
censorship conjecture [4]. Black hole formation in asymp-
totically flat spacetimes was studied mathematically by Ref.
[5, 6] in spherical symmetry, and by Ref. [7] using numerical
techniques that led to the discovery of the celebrated critical
phenomena in gravitational collapse; see Ref. [8] for a re-
cent study. In the asymptotically flat setting, considerable
progress has been made with no symmetry assumptions by
Ref. [9]; see also Ref. [10, 11].

The dynamics of gravity in asymptotically AdS space-
times is not as well-understood as the asymptotically flat
case. One reason for this is that when Λ < 0, solving the Ein-
stein equations constitutes an initial boundary value problem.
In contrast to the asymptotically flat case, the boundary of
AdS is timelike and in causal contact with its interior. For the
reflecting boundary conditions that are commonly used in the
literature, Ref. [12, 13] conjectured that AdS is non-linearly
unstable to the formation of black holes; see also Ref. [14].
In spherical symmetry, Ref. [15, 16] provided a proof for
this instability in the specific setting of the Einstein-null dust
system with an inner mirror. Black hole formation in AdS
acquires an added significance in light of the AdS/CFT cor-
respondence [17–19], according to which black hole forma-
tion in AdS corresponds to thermalization in a dual confor-
mal field theory (CFT). The question of whether or not a
black hole generically forms in AdS is then related to the
question of whether or not a state in a strongly interacting
CFT generically thermalizes.

Gravitational collapse in AdS was first studied in three di-
mensions in Ref. [20]. Asymptotically AdS spacetimes in

D spacetime dimensions (AdSD) are special for D = 3: there
is a mass gap, so configurations with a total mass below a
certain threshold cannot undergo gravitational collapse [21],
even though such solutions may not remain close to AdS3
in any reasonable norm [22]. For D ≥ 4, configurations that
collapse into a black hole after several bounces from the AdS
boundary were found in Ref. [23]; see also Ref. [24, 25]. In
those studies, spherical symmetry was imposed, and the dy-
namics was driven by the presence of a massless scalar field.
Initial data with an amplitude ε were numerically evolved
in time and were found to develop features at progressively
smaller spatial scales, in a turbulent process that terminates
in gravitational collapse on a timescale of O(ε−2). On the
other hand, within the same model in spherical symmetry, it
was also found that there exist open sets of initial data that
lead to solutions that are non-linearly stable against gravita-
tional collapse [26–28].

Efforts have begun to extend these studies beyond spheri-
cal symmetry [29–33]. The majority of results to date have
been perturbative in nature [34], and as such, cannot directly
address the question of whether or not black holes form. In
this Letter, we present the first study of gravitational collapse
in AdS with inhomogeneous deformations away from spheri-
cal symmetry. For the numerical simulations presented here,
we specialize to the case of global AdS5, and we address
the following question: “does gravitational collapse in AdS
occur earlier or later away from spherical symmetry?” We
answer this question by constructing fully non-linear time-
dependent solutions of the Einstein equations starting with
initial data sourced by a massless real scalar field.

Numerical Scheme.—The results presented in this Letter
are based on a new numerical code to solve the Einstein
equations for asymptotically AdS spacetimes. This code uses
Cartesian coordinates in global AdS and is based on gener-
alized harmonic evolution [35]; see also Ref. [36, 37]. We
define Cartesian coordinates in the following way: consider
the metric of global AdS5,

ĝ =−
(

1+
r2

L2

)
dt2 +

dr2

1+ r2

L2

+ r2dΩ
2
(3), (1)

where L is the AdS radius, which is related to the cosmologi-
cal constant by Λ=−6/L2, and dΩ2

(3) = dχ2+sin2
χ(dθ 2+



sin2
θdφ 2) is the metric on the unit round 3-sphere. We com-

pactify the radial coordinate by defining r = 2ρ/(1−ρ2/`2)
so that the AdS boundary, ρ = `, is included in the computa-
tional domain. Here, ` is an arbitrary compactification scale,
independent of the AdS radius L.

In polar coordinates, the Courant-Friedrichs-Lewy (CFL)
condition at the origin ρ = 0 imposes a severe restriction on
the size of the time step. We bypass this issue by introducing
Cartesian coordinates x = ρ cos χ and y = ρ sin χ . Setting
L = 1 and `= 1, the metric (1) in these Cartesian coordinates
becomes

ĝ =
1

(1−ρ2)2

[
− f̂ (ρ)dt2 +4(dx2 +dy2 + y2dΩ

2
(2))
]
,(2)

where f̂ (ρ) = (1−ρ2)2+4ρ2, and dΩ2
(2) = dθ 2+sin2

θdφ 2

is the metric on the unit round 2-sphere.
In moving away from pure AdS, we preserve an SO(3)

symmetry that acts to rotate the 2-spheres parametrized by θ

and φ . This implies that there are seven independent metric
components gtt ,gtx,gty,gxx,gxy,gyy,gθθ , each of which de-
pends on (t,x,y). With this SO(3) symmetry in five dimen-
sions, the general form of the full metric away from pure
AdS is

g = gtt dt2 +gxx dx2 +gyy dy2 +gθθ dΩ
2
(2)

+2 (gtx dt dx+gty dt dy+gxy dxdy) .
(3)

In our Cartesian coordinates, the axis of symmetry where the
2-sphere shrinks to zero size is at y = 0. To ensure that the
spacetime remains smooth there, we impose suitable regular-
ity conditions on our evolved variables at those points. See
Supplemental Material for details of our evolution scheme
together with the gauge choice, boundary conditions, and
axis regularity conditions [38].

We couple gravity to a massless real scalar field ϕ , and
construct time-symmetric data on the initial time slice by
solving the Hamiltonian constraint subject to a freely cho-
sen initial scalar field profile. We use a family of profiles
that smoothly interpolate between spherically symmetric and
non-spherically symmetric configurations

ϕ(ρ,χ) = A f (ρ)+Bg(ρ)cos χ, (4)

where f (ρ) and g(ρ) are C2 transition functions that spa-
tially vary in the range ρ ∈ [ρc,ρd ], for some arbitrary ρc,
ρd ; see Fig. 1. The spatial gradients of these data are com-
pactly supported in the radial direction in the shape of an
annulus centered around ρ0 ∈ [ρc,ρd ]. The constants A and
B measure the strength of the spherically symmetric and the
non-spherically symmetric terms of the initial data respec-
tively. Our results are not sensitive to the specific choice of
f (ρ) and g(ρ). See Supplemental Material for the details
of the typical transition functions that we use in our simu-
lations. Given our choice of initial data, the total angular
momentum of the spacetime is zero. Therefore, if weak cos-
mic censorship holds in our setup, the final state of each of
our simulations should be a global Schwarzschild-AdS black
hole.

We monitor the evolution of black holes by keeping track
of trapped surfaces. We excise a portion of the interior of

any apparent horizon (AH) that forms, to remove any singu-
larities from the computational domain. No boundary condi-
tions are imposed on the excision surface; instead, the Ein-
stein equations are solved there using one-sided stencils. We
use Kreiss-Oliger dissipation [39] to damp unphysical high-
frequency modes that can arise at grid boundaries, with a
typical dissipation parameter of 0.35.

We numerically solve the Einstein equations and the
Hamiltonian constraint using the PAMR/AMRD libraries
[40], and discretize the equations using second order fi-
nite differences. The evolution equations for the metric and
scalar field are integrated in time using an iterative Newton-
Gauss-Seidel relaxation procedure. The numerical grid is in
(t,x,y) with t ∈ [0, tmax], x ∈ [−1,1], y ∈ [0,1]. A typical
unigrid resolution has Nx = 1025, Ny = 513 grid points with
equal grid spacings ∆x = ∆y in the Cartesian directions. We
use a typical Courant factor of λ ≡ ∆t/∆x = 0.2. The results
presented here were obtained with unigrid or with fixed re-
finement although the code has adaptive mesh refinement ca-
pabilities. See Supplemental Material for convergence tests.

Results.—For a fixed total mass and radial compactness,
the time evolution of initial configurations (4) further away
from spherical symmetry consistently exhibit gravitational
collapse within fewer bounces. Throughout, we choose ini-
tial data where the spatial gradients of the initial scalar field
profile are non-vanishing in an annular region bounded by
ρc = 0.4 and ρd = 0.8. These configurations form black
holes after a variable number of bounces that depend on the
values of the coefficients A and B in (4). The size and loca-
tion of the first AH to form also depend on the values of A
and B. For the special case of B = 0, i.e., spherically sym-
metric data, gravitational collapse leads directly to the for-
mation of a black hole centered at the origin x = y = 0. Non-
zero B cases correspond to a one-parameter family of non-
spherically symmetric configurations sourced by a scalar
field whose initial profile has a cos χ dependence.

Fig. 1 (top) shows several snapshots of the normalized dif-
ference K/KAdS − 1 between the Kretschmann scalar K =
Rαβρσ Rαβρσ and its pure AdS value KAdS for one such con-
figuration with A= 0, B= 0.0087 and a total mass M = 0.021
in units of L2. Fig. 1 (bottom) shows the corresponding
profiles of the scalar field. These data collapse after two
bounces into two distinct black holes centered at antipodal
points x = ±0.12 on the axis y = 0. Aside from the last
snapshot, which corresponds to a time slice shortly before
collapse at t = 9.04 in units of L, the snapshots are taken
after each bounce to emphasize the quasi-periodic nature of
the evolution. Deviations away from strictly periodic behav-
ior are evidenced by a gradual sharpening of spatial gradients
after each bounce, which eventually leads to the formation of
two black holes on the axis. See Supplemental Material for
the energy density in the dual conformal field theory on S3

which provides another view of this evolution.
Fig. 2 depicts the effect of moving away from spheri-

cal symmetry in two complementary ways. In Fig. 2 (left),
we consider a one-parameter family of initial data obtained
by varying A and B in (4) while keeping the total mass of
the spacetime fixed for two representative cases with total
masses M = 0.021 (blue squares) and M = 0.030 (red cir-
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FIG. 1. Top: Snapshots of K/KAdS− 1 in global AdS at different
global times t in units of L for an initial profile A = 0, B = 0.0087
and a total mass M = 0.021 in units of L2. The evolution is quasi-
periodic until the first AHs are detected at t = 9.04. Below: Snap-
shots of the scalar field profile for the same configuration, with
ρc = 0.4 and ρd = 0.8. For each of the panels, the top and bot-
tom edges are x = −1,1 and the left and right edges are y = 0,1
respectively.

cles). The left-most point for each mass case corresponds to
a spherically symmetric initial configuration with B = 0. For
these spherically symmetric points, collapse occurs in the
manner that had been found in Ref. [23]. Data obtained for
M = 0.023, M = 0.028, and M = 0.084 show similar qualita-
tive behavior. Increasing B in (4) has the effect of deforming
the initial data away from spherical symmetry. As B is in-
creased, A is decreased in order to keep the total mass fixed.
For larger B, collapse occurs earlier: at certain critical val-
ues of B, the collapse time decreases by roughly πL, i.e., the
two AdS light-crossing times that it takes for a bounce. The
center of collapse also shifts further away from the origin as
B is increased. The coefficient B eventually reaches a max-
imum value corresponding to a maximally non-spherically
symmetric initial configuration (A = 0). These appear in
Fig. 2 (left) as the right-most points. For these points, the
initial data collapse into two distinct black holes on the axis,
in fewer bounces than it takes their spherically symmetric
counterparts to collapse into a single black hole at the origin.

Fig. 2 (right) depicts a different way of visualizing this
faster collapse as one moves away from spherical symmetry.
Here, the values for A and B are obtained in such a way that
the data are at the cusp of collapse after one bounce (yel-
low squares) and at the cusp of collapse after two bounces
(black circles), i.e., increasing either A or B would result
in collapse one bounce earlier. In practice, this entails in-
creasing B while keeping A fixed, thereby increasing the to-
tal mass of the configuration, until one finds the value for B
where collapse time decreases by πL. Fig. 2 (right) shows

that for configurations with larger B, less mass is required to
stay at the cusp. Hence, for the family (4) of initial profiles,
non-spherically symmetric configurations require less mass
to collapse within a given collapse time than their spherically
symmetric counterparts.

Gravitational collapse is preceded by the appearance of
large curvatures near the axis. This provides a way to antic-
ipate when collapse will occur, even before the first trapped
surface is detected. We quantify the curvature deformation
of any given time slice away from pure AdS in the following
way. For some arbitrary threshold value δ , consider the spa-
tial region R where |K/KAdS− 1| > δ on a given time slice
with intrinsic metric γ . Construct the quantity

η ≡
∫

R
d4x
√

detγ |K/KAdS−1| , (5)

and compare it to the spatial volume E ≡
∫
R d4x

√
detγ of the

region R. Fig. 3 shows how the dimensionless number η/E
behaves over time for various representative cases with dif-
ferent collapse times. The oscillations in η/E are inherited
from the quasi-periodic evolution that is depicted in Fig 1.
In all cases, trapped surfaces are formed within a bounce of
η/E exceeding roughly unity. We have begun to extend this
study to initial data where the deformation away from spher-
ical symmetry is parametrized not just in terms of the lowest
spherical harmonic ∼ cos χ on S3, but also in terms of the
higher harmonics. In these cases, η/E continues to be a use-
ful quantity to signal collapse, i.e., collapse is preceded by a
time where η/E & 1. It is also important to note that the time
at which η/E peaks is robust under changes in the threshold
δ , even though the actual value of η/E that precedes col-
lapse does depend on δ . See Supplemental Material for the
data corresponding to these statements.

Configurations of the form (4) with A= 0 and B 6= 0 gener-
ically collapse into two black holes on the axis which sub-
sequently merge to form a single Schwarzschild-AdS black
hole. The time it takes to reach this final state corresponds
to the thermalization time of the dual CFT. The discrepancy
between thermalization time and collapse time is therefore
the time it takes for the two black holes to merge and ring
down to Schwarzschild-AdS. This discrepancy is bounded:
the merger time is bounded from above by (π/2)L, i.e., the
length of a timelike geodesic joining a given point to the ori-
gin, while the ring-down is exponential and thus takes a neg-
ligibly short period of time. There is a potential caveat how-
ever: Ref. [41] conjectured that Schwarzschild-AdS, or more
generally Kerr-AdS, is dynamically unstable for generic per-
turbations. Away from spherical symmetry, it is not known
whether the system equilibrates to a stable black hole. There-
fore, it is possible that the dual CFT may not thermalize at
all [42].

Discussion.—We have presented the first study of gravi-
tational collapse in AdS with inhomogeneous deformations
away from spherical symmetry. Our results show that the
evolution towards smaller spatial scales that leads to col-
lapse persists in this setting, and in fact, we find that moving
away from spherical symmetry facilitates collapse for a par-
ticular family of deformations. For a fixed total mass and
radial compactness, these non-spherically symmetric con-
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FIG. 2. Left: Collapse time versus non-spherically symmetric deformation amplitude B for fixed total masses M = 0.021 (blue squares)
and M = 0.030 (red circles). As the value of B is increased, the total mass is kept constant by decreasing the value of A. Non-spherically
symmetric configurations form black holes earlier, i.e., in fewer bounces. The collapse time is a discontinuous function of the deformation
parameter B. Right: Critical mass versus non-spherically symmetric deformation B. The critical mass is defined as the maximum mass for
which a black hole is formed after N bounces, shown here for N = 1 (yellow squares) and N = 2 (black circles); if the mass were increased
further, a black hole would be formed one bounce earlier. For fixed N, configurations with larger B exhibit lower critical masses, i.e.,
configurations further away from spherical symmetry require less mass to collapse within a given collapse time.
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FIG. 3. The dimensionless ratio η/E defined in (5) for various
representative cases that collapse after zero, one, two, three, or four
bounces. For each case, this dimensionless number begins to ex-
ceed unity within a bounce prior to the formation of a trapped sur-
face. The collapse time for each case is indicated by a vertical line.

figurations collapse earlier than their spherically symmetric
counterparts, and for fixed radial compactness and collapse
time, they require less mass to collapse within the same num-
ber of bounces. This faster collapse may have already been
guessed from the smaller spatial scales that are present in the
initial profiles to begin with. For the annular configurations
that we construct, breaking spherical symmetry amounts to
introducing spatial gradients along the annulus. Neverthe-
less, it was far from clear whether faster collapse as was ob-
served would result from full non-linear evolution, especially
in cases where collapse occurs after multiple bounces from
the AdS boundary. This may have consequences for specific
sets of initial data that are non-linearly stable against col-
lapse (“islands of stability”). Namely, it is conceivable that

the faster collapse we observe is an indication that these is-
lands of stability are shrinking when spherical symmetry is
broken. Systematic studies are required to investigate this
point.

Our results further suggest that there exists a condition on
the strength of the curvature deformation away from AdS in
a given spatial volume, which separates data that collapse
within one bounce of the condition being satisfied from data
that will undergo further bounces. Such a condition was ob-
tained in the asymptotically flat case in spherical symmetry
[6] and can be easily generalized to AdS [43]. It would be in-
teresting to extend this analysis to the non-spherically sym-
metric setting. We have also repeated parts of the present
study in four spacetime dimensions and have obtained qual-
itatively similar results.

We have broken spherical symmetry while preserving an
SO(3) symmetry in five dimensions. In this setting, we see
that collapse is shifted away from the origin and leads to two
distinct trapped regions on the axis. This can be understood
as a focusing of energy density on the poles of the boundary
S3. In the general case with no symmetry and arbitrary ini-
tial data, we expect this behavior to migrate away from the
axis. A straightforward extension is to solve the momentum
constraint equations along with the Hamiltonian constraint to
generate configurations with non-zero total angular momen-
tum. Based on results from perturbation theory, Ref. [33]
suggests that angular momentum may further enhance the
non-linear instability of AdS. As we noted in the main text,
it is not clear whether AdS black holes themselves are non-
linearly stable, so completely general perturbations of AdS
may not settle down. We leave the question of stability of
the black holes in this more general setting for a future work.
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