
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Efficient Simulation of Quantum Error Correction Under
Coherent Error Based on the Nonunitary Free-Fermionic

Formalism
Yasunari Suzuki, Keisuke Fujii, and Masato Koashi

Phys. Rev. Lett. 119, 190503 — Published  9 November 2017
DOI: 10.1103/PhysRevLett.119.190503

http://dx.doi.org/10.1103/PhysRevLett.119.190503


Efficient simulation of quantum error correction under coherent error based on
non-unitary free-fermionic formalism

Yasunari Suzuki,1, 2, ∗ Keisuke Fujii,1, 2, 3, † and Masato Koashi1, 2, ‡

1Department of Applied Physics, Graduate School of Engineering,
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

2Photon Science Center, Graduate School of Engineering,
The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

3JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan

In order to realize fault-tolerant quantum computation, tight evaluation of error threshold under
practical noise models is essential. While non-Clifford noise is ubiquitous in experiments, the error
threshold under non-Clifford noise cannot be efficiently treated with known approaches. We con-
struct an efficient scheme for estimating the error threshold of one-dimensional quantum repetition
code under non-Clifford noise. To this end, we employ non-unitary free-fermionic formalism for
efficient simulation of the one-dimensional repetition code under coherent noise. This allows us to
evaluate the effect of coherence in noise on the error threshold without any approximation. The
result shows that the error threshold becomes one third when noise is fully coherent. Our scheme is
also applicable to the surface code undergoing a specific coherent noise model. The dependence of
the error threshold on noise coherence can be explained with a leading-order analysis with respect
to coherence terms in the noise map. We expect that this analysis is also valid for the surface
code since it is a two-dimensional extension of the one-dimensional repetition code. Moreover, since
the obtained threshold is accurate, our results can be used as a benchmark for approximation or
heuristic schemes for non-Clifford noise.

Introduction.— Quantum error correction (QEC) is a
key technology for building a scalable fault-tolerant quan-
tum computer. According to the theory of fault-tolerant
quantum computation, one can perform quantum com-
putation with arbitrary accuracy if the error probability
is below a certain threshold value [1–3]. The threshold
values of various QEC schemes have been calculated un-
der various assumptions of the noise models and degrees
of rigor [4–21]. In the case of the noise model which only
consists of probabilistic Clifford gates and Pauli measure-
ment channels, such as depolarizing noise, the threshold
value can be efficiently and accurately estimated numer-
ically [6–9] by virtue of the Gottesman-Knill theorem
[22, 23]. On the other hand, non-Clifford noise is un-
avoidable in practical experiments [24–26], but QEC cir-
cuits under non-Clifford noise cannot be treated with this
approach. Specifically, it is theoretically predicted that
coherent noise, which is non-Clifford and is caused, for
example, by over rotation, can have negative effects on
quantum error correction [27]. Therefore, massive effort
has been made for evaluating the effect of noise coherence
on the error threshold. Since the simulation of quantum
circuits under arbitrary local noise sometimes becomes
as hard as that of universal quantum computation, we
cannot efficiently simulate QEC circuits under coherent
noise with straightforward methods. While its compu-
tational cost can be relaxed in some extent [19–21], the
tractable number of qubits with straightforward meth-
ods is limited. In the case of concatenated codes, there
is an efficient method to analytically estimate the error
threshold under non-Clifford noise [17]. However, this
technique is not applicable to topological codes, which
are more feasible in practical experiments [24–26, 28]. In

general, we may approximate non-Clifford noise by a Clif-
ford channel for an efficient simulation [10–16], but the
accuracy of the estimated threshold is sacrificed. An ef-
ficient and accurate scheme, which works for topological
codes under non-Clifford noise, is still lacking.

Here, we construct an efficient and accurate scheme
to simulate one-dimensional (1D) repetition code with
repetitive parity measurements under coherent noise.
While the 1D repetition code cannot protect a logical
qubit from arbitrary single-qubit error, it is still able to
capture a necessary ingredient for fault-tolerant QEC,
and hence was experimentally demonstrated as a build-
ing block for scalable fault-tolerant quantum computa-
tion [24, 26]. The key idea in our scheme is reducing
the QEC circuit of the 1D repetition code to a classically
simulatable class of non-unitary free-fermionic dynam-
ics, which is known as a variation of matchgate quantum
computing [29–37]. As compared to the stochastic noise
model, we find that the error threshold of the 1D repe-
tition code becomes about one third when noise is fully
coherent. The dependence of the error threshold on noise
coherence is explained by using a leading-order analysis
with respect to coherence terms of noise map. We expect
that a similar analysis holds in the surface code [38–40],
which is the most experimentally feasible QEC scheme,
since the surface code is a two-dimensional extension of
the 1D repetition code. Furthermore, our accurate re-
sults can be used as a benchmark for approximation or
heuristic schemes for estimating the error threshold un-
der non-Clifford noise.

Simulation of the 1D repetition code.— The quantum
circuit of the 1D repetition code with repetitive parity
measurements is shown in Fig. 1(a). In the 1D repeti-



2

FIG. 1: (a) The QEC circuit of the 1D repetition code
with n = 3. (b) The error allocation of the

phenomenological (left) and circuit-based (right)
models.

tion code, one logical bit ain is encoded into physical n
data qubits {|0〉⊗n , |1〉⊗n}, which are stabilized by oper-
ators {ZiZi+1}n−1

i=1 , where Ai(A ∈ {X,Y, Z}) is the Pauli
operator on the i-th data qubit. Error syndrome is mea-
sured through (n−1) measurement qubits, each of which
monitors the parities of the neighboring data qubits, i.e.,
ZiZi+1. The measurements are repetitively performed
for T cycles. The encoded bit is finally decoded from
the data qubits and T (n − 1) syndromes, which can be
efficiently done using minimum-weight perfect matching
[24]. The probability with which the decoded bit aout is
flipped is defined as logical error probability pL, which is
the failure probability of the decoding.

Since the 1D repetition code is capable of correcting
only X-type error, we consider a CPTP (completely pos-
itive trace-preserving) map of a general single-qubit X-
type noise, which is regarded as a mixture of the X-
type unitary (fully-coherent) and stochastic (incoherent)
noise:

E(ρ,X) = ceiθXρe−iθX + (1− c) ((1− p)ρ+ pXρX)

=
1 + c

2
eiθXρe−iθX +

1− c
2

e−iθXρeiθX , (1)

where θ is defined by cos θ =
√

1− p and sin θ =
√
p.

The parameter c (0 ≤ c ≤ 1), which we call noise co-
herence, is a measure of coherence in the noise. We
call the parameter p (0 ≤ p ≤ 1) as the physical error
probability since it can be understood as the probabil-
ity with which the input state |0〉 is measured as the
output state |1〉. We consider two types of noise allo-
cation models [41] as shown in Fig. 1(b). In the case of
the phenomenological model, a noise map E(ρ,X) is lo-
cated on each of the data and measurement qubits at
the beginning of each cycle. In the case of the circuit-
based model, the noise map is located at each time
step of preparation, gate operation, and measurement,
on every qubit including the one that is idle at the

time step. There, we assume that two-qubit noise map
pXIE(ρ,X ⊗ I) + pIXE(ρ, I ⊗X) + pXXE(ρ,X ⊗X) acts
on the output qubits after each controlled-Not (CNOT)
operation. Since our noise models are symmetric over the
bit values, we may choose ain = 0 to evaluate the logical
error probability as pL = Pr(aout = 1).

Before reducing the noisy circuit to free-fermionic dy-
namics, we reformulate it as a sequence of generalized
measurements on the data qubits, such that the state af-
ter each measurement is pure. We denote the outcome
of the k-th measurement by tk and the corresponding

Kraus operator by K
(tk)
k . The probability of a sequence

of outcomes tk := tk...t1 is given by

Pr(tk) = Γ(tk) := 〈0⊗n|(K(tk))†K(tk)|0⊗n〉 , (2)

where K(tk) := K
(tk)
k K

(tk−1)
k−1 ...K

(t1)
1 . We may identify

three types of operations on data qubits to assign Kraus
operators. For clarity, we describe the case of the phe-
nomenological model. The first type is the single-qubit
noise E given in Eq.(1). Its operation on the i-th qubits

is equivalently described by Kraus operators K
(φ)
noise,i =√

p(φ)eiφXi , where φ ∈ {±θ} and p(±θ) := 1±c
2 . The

second type is the parity measurement on the i-th and
(i + 1)-th data qubits, which composed of a measure-
ment qubit and two CNOT gates. Treating the noise
map E on the measurement qubit as above, it can be rep-

resented by K
(s,φ)
parity,i =

√
p(φ) 1

2 (I + (−1)se−2iφZiZi+1),
where s ∈ {0, 1} is the output of the parity measure-
ment. In the case of the circuit-based model, we may

still use the same form of K
(s,φ)
parity,i except for varying the

probability mass function p(φ) (see Appendix A [42]).
The third type appears in an alternate description of
the decoding process. Though the input bit is usu-
ally decoded through noisy direct measurements of the
data qubits and classical computation, we use the fol-
lowing equivalent process instead. We apply map E
on each data qubit. We perform ideal parity measure-
ments on neighboring data qubits, whose Kraus oper-

ator is given by K
(s)
parity,i = 1

2 (I + (−1)sZiZi+1). Let
kf be the index of the last ideal parity measurement,
and define t := tkf . Based on all the measured parities,
which is included in t, we choose a recovery operation

R(t) =
∏n
i=1X

ri(t)
i , where ri(t) ∈ {0, 1} is determined

using minimum-weight perfect matching [24, 43, 44]. The

recovered state R(t)K
(t)
kf
|0〉⊗n is in the code space of the

1D repetition code, which should be written in the form
α |0〉⊗n + β |1〉⊗n. The decoded bit aout is thus obtained
by measuring the n-th qubit. The joint probability of
obtaining t and a decoding failure is then given by

Pr(aout = 1, t) = ΓL(t)

:= 〈0⊗n|(R(t)K(t))†
I − Zn

2
R(t)K(t)|0⊗n〉 .(3)

From Eqs. (2) and (3), we have,

pL = Pr(aout = 1) = 〈ΓL(t)/Γ(t)〉t , (4)
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which means that we can accurately calculate pL by
sampling t with probability Γ(t) repeatedly and by tak-
ing the average of ΓL(t)/Γ(t). Since the sampling of
t can be done by sequentially generating tk according
to Pr(tk|tk−1) = Γ(tk)/Γ(tk−1), the efficiency of this
scheme follows that of computing Γ(tk) and ΓL(t).

Reduction to non-unitary free-fermionic dynamics.—
We use non-unitary free-fermionic dynamics to calcu-
late Γ(tk) and ΓL(t) efficiently. Let us briefly summa-
rize the known facts about non-unitary free-fermionic
dynamics [32, 37]. We define {ci} (1 ≤ i ≤ 2n) as
the Majorana fermionic operators for n fermionic modes,
which satisfy {ci, cj} = 2δi,j , c†i = ci and c2i = I.
The covariance matrix for a pure state |ψ〉 is defined

as Mij = −i
〈ψ|ψ〉

〈ψ|[ci,cj ]|ψ〉
2 . We call the state |ψ〉 is a

fermionic Gaussian state (FGS) iff the covariance ma-
trix satisfies MMT = I. An FGS can be fully spec-
ified by a pair (M,Γ), where Γ is the norm 〈ψ|ψ〉.
The absolute value of the inner product of two FGSs,
|ψ〉 7→ (Mψ,Γψ) and |φ〉 7→ (Mφ,Γφ), is given by
| 〈ψ|φ〉 |2 = 2−nΓψΓφ det(Mψ + Mφ). An operator of

form e
∑

i<j αijcicj with αij being a complex value is called
a fermionic Gaussian operator (FGO). Note that FGOs
are not necessarily unitary. An FGO maps any FGS
to another FGS. Given an FGO G and an input FGS
|ψ〉 7→ (M,Γ), the description (M ′,Γ′) for the output
state G |ψ〉 is calculated as follows. Consider a fermionic
maximally entangled state |ψM〉 7→ (MM,ΓM) of 2n

fermionic modes, which is defined by MM =

(
0 I
−I 0

)
and ΓM = 1. We calculate (MG,ΓG) corresponding
to the state |ψG〉 = (G ⊗ I) |ψM〉. In terms of matri-

ces A,B,D, which are defined by

(
A B
−BT D

)
= MG,

the output is calculated as (M ′,Γ′) = (A − B(M −
D)−1BT ,ΓGΓ

√
det(M −D)). In this way, free-fermionic

dynamics consisting of FGOs on FGSs can be simulated
efficiently.

Now we are ready to reformulate the QEC process
with non-unitary free-fermionic dynamics. Using the
Jordan-Wigner transformation, we may choose c2i−1 =(∏i−1

j=1Xj

)
Zi and c2i =

(∏i−1
j=1Xj

)
Yi. We see that

Xi = −ic2ic2i−1 and ZiZi+1 = −ic2i+1c2i, which are
both quadratic terms of the Majorana fermionic oper-

ators. Therefore, K
(φ)
noise,i,K

(s,φ)
parity,i,K

(s)
parity,i and R are

FGOs. Unfortunately, the initial state |0〉⊗n and the op-
erator I−Zn

2 for calculating ΓL(t) are not an FGS and an
FGO, respectively. For an efficient simulation, we need
a further trick as follows. (While similar tricks in Refs.
[33, 35, 36] might be employed, the following construc-
tion is much simpler and more efficient for our purpose.)
We add the (n + 1)-th ancillary qubit and correspond-
ing Majorana fermionic operators c2n+1, c2n+2. Using an

FGS |ψ̃〉 := (|0〉⊗(n+1)
+ |1〉⊗(n+1)

)/
√

2, it is not difficult

to show that

Γ(tk) = 〈ψ̃|(K(tk))†K(tk)|ψ̃〉 , (5)

ΓL(t) = 〈ψ̃|(R(t)K(t))†
I − ZnZn+1

2
R(t)K(t)|ψ̃〉 , (6)

since K(tk) and R(t) commute with
∏n+1
j=1 Xj . Hence,

they can be efficiently calculated (see Appendix A [42]
for detail).
Result.— We show the logical error probability pL as a

function of the physical error probability p under incoher-
ent noise (c = 0) and fully coherent noise (c = 1) in Fig. 2.
To observe clear behavior of the error threshold, we have
varied the number T of cycles according to n as T = n−1.
We also assumed uniform error probability for two-qubit
noise, i.e. pXI = pIX = pXX = 1

3 . We employed uni-
form weighting for performing minimum-weight perfect
matching. The logical error probability pL is expected to
be exponentially small in the number of the data qubits
n as far as the physical error probability p is below a
certain value, which we call the error threshold pth. By
using the scaling ansatz [6, 9], we obtained the thresh-
old values pth = 10.34(1)% for c = 0 and 7.87(2)% for
c = 1 in the phenomenological model, and 3.243(6)% for
c = 0 and 1.040(5)% for c = 1 in the circuit-based model.
Our result for c = 0 in the case of the phenomenological
model is consistent with the known results [6]. For more
detailed procedures, see Appendix B [42]. We also con-
firmed exponential decay of logical error probability pL

with code distance d below the threshold value, which is

approximated by pL ∝
(

p
pth

)d/2
regardless of the coher-

ence of the noises (see Appendix E [42]).
Dependence of the error threshold pth on the noise co-

herence c is shown in the insets of Fig. 2. We see that
the error threshold pth decreases as the noise coherence c
increases. Note that non-uniform weighting improves the
error threshold, but only slightly (see Appendix C [42]).
The dependence on c can be explained with a leading-
order analysis as follows. The noise map of Eq.(1) can be
rewritten as E(ρ,X) = (1−p)ρ+ic

√
(1− p)p(Xρ−ρX)+

pXρX. We call the second term ic
√

(1− p)p(Xρ− ρX)
as the coherence term. This term contributes to diagonal
terms of the density matrix only through a concatenation
of multiple noise maps. The correction to the diagonal
terms after several cycles is written as even-order terms
in c

√
(1− p)p. For p � 1, the leading order of the cor-

rection is O(p) in the circuit-based model, while it is
O(p2) in the phenomenological model since an error on
a data qubit spreads to two measurement qubits before
the next noise map is applied on the data qubit. For ex-
ample, the product of the coherence terms of noise maps
located in the positions shown in Fig. 3 contributes the
correction. In the case of the phenomenological model,
the leading term is proportional to c4p2, and its sign de-
pends on the results of previous syndrome measurements.
Such a noise leads to space-time correlations in the syn-
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FIG. 2: The logical error probability pL is plotted as a
function of the physical error probability p for the two

patterns of noise allocation. Insets show the error
threshold pth as a function of the amount of the

coherence c. The blue dots are numerical results. The
solid black curve in the circuit-based model is estimated
behavior from the simulation of small-size QEC circuits.

The dotted curves are drawn as references.
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FIG. 3: The sets of coherent error allocations which
contribute to the probability distribution of the

syndrome measurements.

drome measurements. Since the decoder is not adapted
to such correlations, the existence of coherence in noise
is expected to result in a worse logical error probability.
On the other hand, in the case of the circuit-based model,
the leading term is proportional to c2p, and it always in-
creases the error probability. This directly worsens the
logical error probability and the error threshold.

In the case of the circuit-based model, we seek a

more quantitative explanation of the behavior by propos-
ing a heuristic ansatz as follows. We define an effec-
tive physical error probability of a data qubit per cy-
cle peff(p, c) (the precise definition is given in Appendix
D [42]). The probability peff(p, c) should be expanded
for small p as peff(p, c) = β(1 + αc2)p + O(p2), where
α is constant and is independent of the system size n.
We assume that the logical error probability pL(p, c) can
be well explained by the local increase of noise, i.e.,
pL(p, c) = pL((1+αc2)p, 0). Based on this ansatz, the er-
ror threshold under coherent noise pth(c) can be written

as pth(c) ∼ pth(0)
1+αc2 if pth � 1. By using the analytically

obtained value α = 11/6 (see Appendix D [42]), this
ansatz gives the solid curve in the inset of Fig. 2, which
is in good agreement with the accurate numerical results.
We may expect that a similar leading-order ansatz also
holds for the surface code, since it is a two-dimensional
extension of the 1D repetition code. The factor α is also
easily obtained by analytically calculating the effective
bit-flip probability, and pth(0) for incoherent noises can
be efficiently computed. Therefore, the error threshold of
the surface code under coherent noise will be estimated
by the same approach.

Conclusion and discussion.— We constructed an effi-
cient and accurate scheme for estimating the error thresh-
old of the 1D repetition code under coherent noise. We
have calculated the error threshold under coherent noise
in terms of the physical error probability p and the noise
coherence c. The parameters p and c can be experimen-
tally accessible by randomized and purity benchmark-
ings, respectively [45, 46]. We emphasize here that the
proposed accurate and efficient scheme is not limited to
the 1D repetition code. In fact, in Appendix F [42] we
provide an example with a fully quantum code, which
simulates the surface code under a phenomenological co-
herent noise model. We have also proposed a leading-
order ansatz for the estimation of the error threshold
under coherent noise, and found that it reproduces the
accurate numerical results well. This suggests that the
effect of the coherent noise on the surface code will be as-
sessed by an analogous ansatz, which can be calculated
easily. In more general terms, the obtained accurate error
thresholds of the 1D repetition code will serve as a ref-
erence to test the accuracy of approximation or heuristic
schemes for simulating non-Clifford noise, as was done
for the leading-order ansatz.
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