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A common assumption is that one applies fault-tolerant quantum error correction (FTQEC) after
every gate during quantum computing. However, it is known that this is not always optimal since
the FTQEC procedure itself can introduce errors. Here we vary the number of logical gates between
FTQEC operations given that a failure of a postselection condition may cause FTQEC to be skipped.
We derive an expression for the logical error rate as a function of error-correction frequency, and
find the optimal frequency for the application of FTQEC. Furthermore, we show this is relatively
insensitive to postselection failure probability for a large range of such probabilities. We provide an
example of the application of the analytic expression to the [[7, 1, 3]] Steane code and data derived
from Monte Carlo simulation.

Quantum error correcting codes (QECCs) [1–5] will be
necessary for reliable storage and processing of quantum
information. The redundant information used in these
codes protects quantum information by enabling the de-
tection and correction of errors assuming they are below
a certain threshold value [6] and assuming that they are
operated in a fault tolerant manner [7]. Fault tolerance
means that information can be stored (and/or manipu-
lated) reliably even if individual components are faulty.

The largest known classes of QECCs use ancillary
qubits (ancillas) to extract the measurement syndrome
that identifies correctable errors. The ancillas may be
prepared in several different ways: using the Shor tech-
nique (the ancilla is in a cat state) [8], Steane technique
(the ancila is in a logical state) [9], or Knill ancillas [10].
In all cases the errors must not propagate to the data
in order to ensure fault tolerance. The qubits used for
encoding together with the ancillas, lead to a large over-
head since many physical qubits are utilized to encode
and protect one logical (encoded) qubit.

Reducing these overheads is a particularly important
theoretical task. Topological codes [4, 11] may be prefer-
able, but recent work comparing resources in topological
and concatenated codes suggests that the best code to
use is highly dependent on the details of the physical
constraints [12]. Brooks, et al. analyzed the Bacon-Shor
code when X and Z errors have different probabilities
thus reducing the size of the code for those errors which
are less prevalent [13]. Weinstein has provided a relation
between the fidelity and physical error rates for different
numbers of gates in the [[7, 1, 3]] Steane code [14]. He
found that the fidelity is reduced slowly after skipping
the QEC [14, 15]. This leads one to believe that QEC
after every step is certainly not necessary and thus uses
resources unnecessarily.

In addition to large overhead requirements of QEC,
checking the ancillas for errors before use helps ensure
fault tolerance. Most QECCs assume an error correction
step after each step. (A step may be a WAIT gate, or
a logical gate.) However, if an ancilla does not pass the

check, the QEC must be skipped as a practical matter.

Our work simultaneously addresses both of these prob-
lems. First, if one skips a QEC, how is the logical error
probability affected? Second, if one skips QEC to save re-
sources, how many can one skip without a large increase
in the logical error probability given that an ancilla check
may fail? We find the optimal number of steps before im-
plementing a full QECC procedure. This saves both time
and resources.

We emphasize that this optimization procedure identi-
fies the number of steps a computation completes before
QEC, i.e. the frequency of the QEC. Other researchers
have optimized the encoding and decoding procedure to
find the best code for a set of errors [16–18]. In other
work, a message-passing algorithm was shown to aid in
QEC for a concatenated code [19]. Here we assume a
given code, without concatenation, and provide the opti-
mal QEC frequency. Our methods may be combined with
these other methods of optimization/resource reduction.

In the next section we find an analytic expression for
the cumulative logical error probability PL after a logical
data qubit undergoes operations from N logical gates in
total, with m gates in between each QEC. We consider
the [[7,1,3]] Steane code [2] and the Steane ancilla tech-
nique and determine PL after (N/m) “blocks” of gates
and QEC operations. We express PL as a function of m
and the physical gate error ǫg, and then minimize as a
function of m. We then compare the predicted error rate
to that obtained via Monte Carlo simulation.

Derivation of PL:Logical gate and QEC model–In gen-
eral, the dependence of the logical error rate on the phys-
ical gate error rate depends on the circuits used to im-
plement gates and QEC. While our analysis is based on
the Steane code, we use a model that could be read-
ily adapted to other codes. We thus produced a semi-
abstracted model based on the Steane code with Steane
ancillas. In this QEC approach X and Z errors are cor-
rected separately, and our model thus considers the prop-
agation and correction of only one kind of error (with the
same analysis applicable to both X and Z).
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Logical errors may be introduced in two ways, from
the logical gates and the QEC itself (in this analysis we
do not treat errors from movement or hold operations as
a separate category, they are incorporated into the above
categories). We model a noisy physical gate as perform-
ing the desired operation followed by, with probability
ǫg, an error. We treat logical gates as transverse, that is,
consisting of a single physical gate applied to each qubit.
Our model of the QEC is more approximate. We divide

errors induced by QEC into four separate parts (as shown
in Figure 1) with the following probabilities:
1. “Correction errors”, with probability ǫc per qubit,

are defined as errors in the QEC affecting data qubits
only (not the ancilla measurement). Since the correction
operations can be implicitly performed using the “Pauli
frame” [20] rather than physical gates, such errors are
limited to those failures in two-qubit gates used to inter-
act the data with ancillas where only the data is affected.
The next three types of errors affect the data by caus-

ing an incorrect syndrome measurement, and thus an in-
correct correction operation.
2. We will define “syndrome errors”, with probability

ǫs per qubit, as those where an error on the QEC ancilla
(or its measurement) only (i.e., with no errors directly
applied to the data) cause a data qubit to be wrongly
“corrected”, in addition to any errors already present.
3. “Omission errors”, with probability ǫo per qubit,

represent erroneous syndromes which combine with ex-
isting data errors (where present) to (wrongly) return a
syndrome indicating no errors. Thus if the data is ini-
tially without error, an omission error in the QEC will
lead to an error on the data, but if a single qubit error is
present on the data prior to the QEC, an omission error
will lead to this error remaining uncorrected.
4. Finally, “double errors”, with probability ǫd per

qubit, are where a single failure in the gate joining the
data to the ancilla leads to errors on both outputs. (We
only consider this class of errors when source and target
errors on two-qubit gates are correlated). This is differ-
ent than a standard syndrome error since, for example,
a double error in isolation is equivalent to a data error
correctly propagated to the ancilla and thus corrected.
Conversely, a double error along with a syndrome error
in the same QEC can lead to two data errors (while 2
syndrome errors will only produce 1 data error).
When the ancilla does not pass the check, which hap-

pens with probability ǫa (“ancilla” error, not per qubit)
the QEC operation is not performed. Such events do not
produce data errors, but result in existing errors not be-
ing corrected when they should be. Note that all of the
above are functions of the physical gate error, ǫg, but the
exact relationship depends on the QECC used, thus we
treat them as separate variables.
Derivation of PL: Logical error rate–The sequence of

(N/m) blocks may, in a distance-3 code, produce a log-
ical error if two or more data qubits end up with un-

corrected physical errors. To estimate the logical error
rate PL, we enumerate the ways in which this can occur,
given that successful QEC operations will remove errors,
limiting the possible ways to create a logical error. The
fault-tolerant design means a logical error will only occur
with probability second-order or higher in the various er-
ror probabilities. We are particularly interested in the
regime where the ancilla errors are significantly larger
than the other errors, (as can occur with complex ancilla
creation circuits). While ancilla errors do not affect the
data directly, they can result in multiple QEC operations
being skipped with a consequent increase in the logical
error probability.
We suppose a set of m gates (referred to “block” of

gates) is implemented followed by a QEC operation. In
the absence of skipped QECs the leading-order contri-
butions to the logical error rate are limited: two errors
can occur within a block or across two adjacent blocks.
Additional errors that may arise by one or more skipped
QECs follow a simple pattern: the only second-order er-
rors arising from f skipped QECs, but wouldn’t arise
from f − 1, is where the skipped QECs all occur sequen-
tially, and the two errors in question are on the block
containing the first skipped QEC and the block following
the final skipped QEC.
For a sequence of B ≡ N/m blocks, there are B − f

ways to have f sequential skipped QECs. Thus if two
errors within the same block can produce a logical error
when no QECs are skipped (for an overall probability
weighted by the number of blocks N/m), the correspond-
ing combination of errors occuring in different blocks sep-
arated by f skipped QECs is weighted by a factor

γ ≡

B−1
∑

f=1

ǫfa(B − f) =
Bǫa(1− ǫa)− ǫa + ǫB+1

a

(1− ǫa)2
(1)

Similarly if two errors across two adjacent blocks can
produce a logical error when no QECs are skipped, the
corresponding weighting factor for f skipped QECs is

γ3 ≡

B−1
∑

f=1

ǫfa(B − f − 1) = (γ − (B − 1)ǫa)/ǫa. (2)

Summing all possible second-order errors (a full break-
down is provided in the supplemental material), we ob-
tain the second-order formula for PL:

PL = 42
[

B
(

mǫg

(mǫg
2

+ (1 − ǫa)(ǫs + ǫd)
)

+ (1− ǫa)
(

ǫc

(

ǫs + ǫo +
ǫc
2

)

+ ǫd

(

ǫs +
ǫd
2

)))

+((B − 1 + γ3)(1 − ǫa)(ǫc + ǫs + ǫo) + γmǫg)

×(mǫg + (1 − ǫa)(ǫs + ǫd))] (3)

(See supplemental material for further detail.)
Minimizing PL(m)–PL is a discrete function of m. In

the limit of many blocks (B → ∞) we can express PL as
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FIG. 1. (Color online) “Noisy” QEC for correction of X er-
rors. The star represents the location of a syndrome error, and
triangle a location of a correction error. The Steane ancilla
state is |+L〉. Measurements are performed in the Z-basis.

a function PLp
(m) ≃ dm−1 + c0 + c1m, where

d = 42B(1− ǫa)





ǫc

(

ǫs + ǫo +
ǫc
2

)

+ ǫd

(

ǫs +
ǫd
2

)

+ (ǫs + ǫd)(ǫc + ǫs + ǫo)





(4)

c0 = 42Bǫg(ǫc + 2ǫs + ǫo + ǫd), c1 = 42Bǫg
2

(

1

1− ǫa
−

1

2

)

(5)

mmin satisfies PL(mmin) < PL(mmin−1),PL(mmin) <
PL(mmin+1), thus from we havemmin(mmin+1)c1−d >
0,mmin(mmin − 1)c1 − d > 0 and hence, since mmin is
positive, it is the unique integer satisfying

√

1

4
+

d

c1
−

1

2
< mmin <

√

1

4
+

d

c1
+

1

2
. (6)

Thus the dependence of PL on m is determined by the
variable

d

c1
=

[

ǫ2g(1 + ǫa)
]

−1
2(1− ǫa)

2

[

ǫc

(

ǫs + ǫo +
ǫc
2

)

+ ǫd

(

ǫs +
ǫd
2

)

+ (ǫs + ǫd)(ǫc + ǫs + ǫo)
]

. (7)

Monte Carlo Simulation of PL–As discussed above, our
analytical formula for the logical error simplifies the de-
scription of QEC errors (in general a function of complex
ancilla circuits) to the variables ǫs,o,c,d, which we assume
are the same for every qubit. In order to check the accu-
racy of this approximation, we performed Monte Carlo
simulations of the QEC for the [[7,1,3]] Steane code and
Steane ancilla technique using QASM-P, simulation soft-
ware based on QASM [21], in order to compare the logical
error rates obtained with those predicted.
Initially, all gates were simulated using the stochastic

error model for depolarizing noise [22]. In this case, we
considered bit-flip (X) errors only on the data qubits (Z
errors may be dealt with independently in the [[7,1,3]]
code, and we assume at equal rates). We used N = 1000

with varying block sizes m ∈ {1, 2, 4, 5, 8, 10, 20, 25, 100},
thus B varied between 1000 and 10. In order to ac-
curately simulate the errors obtained in the verifica-
tion process but still vary ǫa independently of ǫg, QECs
are skipped with probability ǫa, but if the QEC is not
skipped, ancilla verification is repeated until verification
is passed (at which point that ancilla is used in the QEC).
To determine PL, the data is prepared without error, in

a logical |0〉 state. Then a series of blocks ofm transversal
logical gates (to simulate errors, these are simply wait
operations which do not change the qubits’ state in the
absence of errors), followed by one QEC operation per
block, are applied, for a total of N logical gates and B =
N/m blocks and (attempted) QECs. Finally, the data is
checked for logical X errors. Each simulation (for a given
choice of variable values ǫg and ǫa has 106 runs). From
the Monte Carlo simulation we therefore obtain PL as a
function of the physical error rates.
The graphs below show detailed agreement between

the numerical monte carlo simulations of the Steane code
with the Steane ancilla and the analytic expression.
Numerical estimation of ǫs and ǫo–By our definition,

the only source of correction errors is the CNOT gate
interacting the data with the ancilla. Such errors oc-
cur only when the gate failure leads to an X error on
the CNOT source (the data) but not the CNOT target.
Similarly, double errors occur when a CNOT failure leads
to X errors on both outputs. In our depolarizing error
model single qubit gates undergo X , Y or Z errors with
equal probability ǫ/3, and two-qubit gates undergo the
15 possible two-qubit errors (X⊗ I, Y ⊗ I . . . Z⊗Z) with
equal probability ǫ/15. Since our analysis only considers
bit errors (introduced by either X or Y operators), we
have a single-qubit gate bit error probability of ǫg = 2ǫ/3.
Thus the probability of a CNOT source-only error, com-
ing from X⊗I,X⊗Z, Y ⊗I, Y ⊗Z is ǫc = 4ǫ/15 = 2ǫg/5.
Likewise the probability of a double error comes from
X ⊗X,X ⊗ Y, Y ⊗X,Y ⊗ Y and hence ǫd = 2ǫg/5
ǫs and ǫo were determined directly from simulation.

By our definition, a syndrome error or double error in
a QEC will, for an input logical qubit containing one
error, add a second error, leading to an overall logical
error, and are the only first-order QEC errors which do
this. Thus to estimate error rate ǫs + ǫd, the data was
first prepared in a logical eigenstate, with an error on one
of the seven qubits. The QEC procedure for the [[7,1,3]]
code was then performed using the stochastic error model
for depolarizing noise [22]. Finally the logical qubit was
checked for logical errors to determine the error rate.
Similarly, if the input data has a single logical error en-

tering and leaving the QEC, this will be due to either a
correction or omission error. Hence to estimate the QEC
physical error rate ǫc + ǫo, we prepare the input logical
qubit with an error on one of the seven corresponding
physical qubits, then we perform the same QEC simula-
tion procedure as before, but determine the rate based
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FIG. 2. (Color online) PL vs m for ǫg= 5.0 × 10−5 ,8.0 × 10−5, 1.0 × 10−4 , 3.0 × 10−4, where ǫa=0.3. The triangular blue
points are the numerical values of PL as given by the Equation (3) in the paper. The circular black points are the numerical
simulation values of PL.

on events when the output has a single error (rather than
two). In both cases we varied the input error over all 7
qubits and took the mean resultant PL.
We performed the simulation with a variety of numer-

ical values for ǫg (10−5 ∼ 10−3). For each different value
of ǫg, we determine the numerical values of ǫs and ǫc+ ǫo
The relationship is fitted to a linear equation to deter-
mine the coefficients for ǫs vs. ǫg and ǫc + ǫo vs. ǫg,
which were: ǫs + ǫd = 3.85ǫg, ǫc + ǫo = 1.01ǫg, ⇒
ǫs = 3.45ǫg, ǫo = 0.61ǫg.
Results and discussions–In the supplemental material,

we show the relationship between PL and ǫa for a given
ǫg and also mmin versus ǫa. These vary as expected.
More importantly, Figures 2 show the relationship be-

tween PL and m for the case ǫa = 0.3, for gate error val-
ues ǫg = 5.0×10−5, 8.0×10−5, 1.0×10−4, and 3.0×10−4.
There is generally good agreement between the data gen-
erated by the formula and the simulation (and reasonably
good agreement even given the assumption of large B, es-
pecially the location of mmin), and mmin is insensitive
to variations in ǫa over the range of ǫa considered, with
mmin = 5 in all cases. Within the region m < mmin,
the error rate is reduced both by increasing m and by
increasing ǫa, since both result in fewer QEC operations
(the only difference being whether the skipped operations
are regularly spaced or not), and QEC operations in this
region produce more errors, on average, than they cor-
rect. Similarly the behavior is reversed for m > mmin.
Again, this is shown explicitly in Figures 2.
Note that PL is the cumulative error for 1000 gates

(plus QEC operations with some frequency), and hence
may be larger than the underlying error for an individual
physical gate, even when operating below threshold.
Conclusions–We have found the optimal number of

quantum gates to perform before applying an error cor-

rection operation for a semi-abstract model that can be
applied to a variety of codes although topological codes
behave a bit differently and our method does not directly
apply. The analytic expression provides explicit depen-
dence on the error correction frequency as a function of
the gate error rate, ancilla failure rate, and error rates for
the correction operation. The various rates depend on
the underlying physical gate error rate. The dependence
is different for different circuits which are determined by
the QECC used. To be explicit, we showed in detail how
this works by example. Our example is the commonly
used Steane [[7,1,3]] code and Steane ancilla technique.
Our model is applicable to either X or Z errors, although
a full analysis of both would need to make the (reason-
ably straightforward) extension of considering errors of
one kind produced in QECs for the other, logical gates
(e.g. the Hadamard) which convert between error types,
and correlated X and Z errors from 2-qubit gate failures.
We have assumed a transversal gate model. Single-

qubit logical operations may, depending on the compu-
tation and code, be dominated by non-transveral gates
(e.g. the T gate). Such gates often require preparation of
a post-selected ancilla and would require an error model
similar to that used for QEC. Our treatment is expected
to work very well for storage where one implements no
operation, called a WAIT gate.
For the Steane code and Steane ancilla, we compared

the results with the simulation using QASM-P and found
excellent agreement showing that our coarse-graining
(due to a rough classification of error types) provides
enough precision to provide a very reliable estimate. Fur-
thermore, we find that the optimum frequency to apply
QEC operations is relatively insensitive to ancilla failure
probability, (with the optimum varying from m = 3 to
m = 6 but frequency changes within this range making
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only small differences to the overall logical error), indi-
cating that skipping QEC operations under ancilla fail-
ure will in many cases be a successful approach even in
a design where QECs are performed infrequently. This
will save resources while providing a better overall logical
error rate for quantum error correcting codes.
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