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We have measured the quantum depletion of an interacting homogeneous Bose–Einstein condensate, and
confirmed the 70-year old theory of N. N. Bogoliubov. The observed condensate depletion is reversibly tuneable
by changing the strength of the interparticle interactions. Our atomic homogeneous condensate is produced in
an optical-box trap, the interactions are tuned via a magnetic Feshbach resonance, and the condensed fraction
determined by momentum-selective two-photon Bragg scattering.

After superfluidity of liquid 4He was discovered in 1937 [1,
2], its connection to Bose–Einstein condensation was posited
by F. London [3] and L. Tisza [4]. However, while at zero
temperature liquid helium is 100% superfluid, less than 10%
of the atoms are actually in the Bose–Einstein condensate
(BEC) [5, 6]; most of the particles are coherently expelled
from the condensate by strong interactions, and spread over
a wide range of momenta. In 1947 N. N. Bogoliubov de-
veloped a theory that explains the microscopic origin of such
interaction-driven, quantum depletion of a BEC [7]. This the-
ory has become a cornerstone of our conceptual understand-
ing of quantum fluids, but is quantitatively valid only for rel-
atively weak interactions, and could not be tested with liquid
helium. The connection between condensation and superflu-
idity, as well as superconductivity, is still a topic of active
discussion; for a modern perspective see [8, 9].

Nowadays, gaseous atomic BECs provide a flexible setting
for exploring the rich physics of interacting Bose fluids [10–
12], and many liquid-helium-inspired theories can now be di-
rectly confronted with experiments. According to the Bogoli-
ubov theory, for a homogeneous Bose gas of particle density n
and interactions characterised by the scattering length a, and
assuming

√
na3 � 1, the condensed fraction at zero temper-

ature is [13]

nBEC/n = 1− γ
√
na3 , (1)

where γ = 8/(3
√
π) ≈ 1.5. This prediction was tested using

diffusion Monte Carlo simulations, and found to be quantita-
tively valid for na3 . 10−3 [14], but an experimental confir-
mation has been lacking. Effects of quantum depletion have
been observed in harmonically trapped atomic gases, both by
enhancing the role of interactions in optical lattices [15] (see
also [16, 17]) and in high-resolution studies of the expansion
of a weakly-interacting gas [18]. However, only semiquanti-
tative comparison with theory has been possible, due to com-
plications associated with the addition of the lattice, the inho-
mogeneity of the clouds, and/or the interpretation of the ex-
pansion measurements [19].

In this Letter, we test and verify the Bogoliubov theory
of quantum depletion in a textbook setting, using a homoge-
neous 39K BEC [20]. We produce our clouds in a cylindrical
optical-box trap (see Fig. 1), of radius R = 32 µm and length
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FIG. 1. Momentum distribution of a zero-temperature homogeneous
Bose gas. We consider a gas of density n and size L, and two dif-
ferent values of the scattering length a. We show the expected 1D
momentum distribution ñ(k) (see text), normalised so that ñ(0) = 1
would correspond to no quantum depletion (setting γ in Eq. (1) to 0).
The total ñ(k) consists of the BEC peak (blue), with a Heisenberg-
limited width ∝ 1/L, and a broad quantum-depletion pedestal (or-
ange) of characteristic width 1/ξ, where ξ is the healing length. To a
good approximation, the low-k distribution is the same as for a pure
BEC, just scaled by a factor 1 − γ

√
na3, indicated by the dashed

lines. For this illustration we use experimentally relevant values of
L/ξ, but exaggerated values of

√
na3, to make the orange shading

visible in the main panels. Also note that we assume that the very
broad ñQD(k) is not affected by finite-size effects. The cartoons on
the left depict the coherent excitations out of the (blue) condensate,
which occur as pairs of atoms with opposite momenta. The right
insets highlight the fact that ñQD(k)� ñBEC(k) at large k.

L = 50 µm [21], tune the interaction strength via a magnetic
Feshbach resonance [22], and measure the condensed frac-
tion by spectroscopic ‘BEC filtering’ [23] - using Doppler-
sensitive two-photon Bragg scattering [24, 25] we spatially
separate the BEC from the high-momentum components of
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the gas.
Bragg spectroscopy of ultracold atomic gases [24, 25] gives

access to the dynamic structure factor S(q, ω) in conceptually
the same way as inelastic neutron scattering does for liquid
helium [5, 6]; here ~q and ~ω are the momentum and en-
ergy of an excitation. We briefly highlight some differences
between our measurements and those performed on liquid he-
lium. First, after preparing a strongly interacting gas, and just
before probing it, we suddenly turn off the interactions. This
eliminates final-state interaction effects, and allows clean and
direct probing of the suddenly frozen momentum distribution.
Second, in our experiments the momentum ~q is imparted to
an atom via a stimulated (coherent) two-photon process, and
q and ω are defined by the differences in the momenta and fre-
quencies of the photons from two intersecting laser beams. In
an equivalent picture, the atom’s energy changes through elas-
tic scattering off a moving optical-lattice potential, formed by
the interference of the two laser beams, which has period 2π/q
and speed ω/q. For an atom with initial momentum ~k, the
scattering resonance is given by ω = ~q2/(2m) + ~k · q/m,
where m is the atom mass and the k · q term arises due to
the Doppler effect. This k dependence of the scattering reso-
nance allows a spectroscopic measurement of the momentum
distribution and, hence, the condensed fraction. Finally, note
that since the atomic states |k〉 and |k + q〉 are coherently
coupled by the Bragg beams, an atom undergoes Rabi oscil-
lations between the two states as a function of the duration
of the Bragg light pulse, with a period set by the two-photon
Rabi frequency Ω [see Fig. 2(a)].

In our setup [26], q is aligned with the axis of the cylindri-
cal box trap (z) and q = 1.7× 2π/λ, where λ = 767 nm. The
Bragg resonance condition thus depends only on an atom’s
initial momentum along z, and by counting the diffracted
atoms we effectively probe the one-dimensional (1D) momen-
tum distribution of the cloud, ñ(k), given by the integral of the
3D distribution along the two transverse directions. We aim to
diffract only the condensed atoms, so we tune ω to ~q2/(2m).
In frequency space our spectroscopic resolution is set by Ω,
which corresponds to a momentum resolution of Ωm/q.

More specifically, we want to spatially separate the BEC
from the quantum depletion (QD), which relies on a sep-
aration of three momentum scales, 1/L � 1/ξ � q,
where ξ = 1/

√
8πna is the healing length. In Fig. 1

we illustrate the expected ñ(k) for a zero-temperature gas:
ñ(k) = ñBEC(k) + ñQD(k), where ñBEC has a Heisenberg-
limited width ∝ 1/L [27] and exponentially suppressed high-
k tails, while ñQD(k) has a width ∝ 1/ξ and long polyno-
mial tails [18, 28–30] (see [31] for details). The inequality
L/ξ � 1 thus ensures that ñQD(k) extends over a much wider
range of momenta than ñBEC(k), so Ω can be chosen such
that a Bragg pulse diffracts essentially the whole BEC and al-
most none of the QD. The inequality qξ � 1 ensures that the
momentum kick received by a diffracted atom, ~q, is much
larger than the QD momentum spread, so that after the Bragg
pulse, and a sufficiently long subsequent time-of-flight, the
diffracted and the non-diffracted portions of the cloud clearly
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FIG. 2. Bragg filtering and reversible interaction-tuning of the con-
densed fraction. (a) Diffracted fraction (DF) as a function of the
Bragg pulse duration, τ , for Ω = 2π × 1.8 kHz and a ≈ 3000 a0.
Absorption images in the background show the stationary (bottom)
and diffracted (top) clouds, for the data points indicated by the red
diamonds. (b) Diffracted fraction for τ close to π/Ω, for three dif-
ferent preparations of the cloud (see inset): at 700 a0 (filled blue
circles), after raising a from 700 a0 to 3000 a0 in 80 ms (orange
diamonds), and after reducing it back to 700 a0 in another 80 ms
(open green circles). We see that increasing a reversibly reduces the
maximal diffracted fraction. All error bars show standard statistical
errors in the mean.

separate in real space [see Fig. 2(a)]. For all our measurements
L/ξ > 30 and qξ > 12.

We start by producing a quasi-pure weakly-interacting BEC
of density n ≈ 3.5 × 1011 cm−3 in the lowest 39K hyperfine
state, |F = 1,mF = 1〉 in the low-field basis, which features
a Feshbach resonance centred at 402.70(3) G [32]. We pre-
pare the BEC at a = 200 a0, where a0 is the Bohr radius,
so
√
na3 < 10−3, and in time-of-flight expansion we do not

discern any thermal fraction. We then (in 150 − 250 ms) in-
crease a to a value in the range 700 − 3000 a0, and measure
the condensed fraction. To prepare the initial quasi-pure BEC
we lower the trap depth U0 to ≈ kB × 20 nK, but before in-
creasing a we adiabatically raise U0 by a factor of 5, to ensure
that U0 � ~2/(2mξ2). The largest a that we explore here is
limited by imposing requirements that: (i) during the whole
experiment the atom loss due to three-body recombination is
< 10%, and (ii) if we reduce a back to 200 a0 we do not ob-
serve any signs of heating; for a discussion of additional mea-
surements at even larger a (with larger particle loss) see [31].

Just before turning off the trap and applying the Bragg
pulse, we rapidly (in 60 µs) turn off the interactions, us-
ing a radio-frequency pulse to transfer the atoms to the
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|F = 1, mF = 0〉 state, in which a ≈ 0 [32]. This freezes
the momentum distribution before we probe it, and allows the
diffracted and non-diffracted components of the gas to sepa-
rate in space without collisions.

After the Bragg pulse, we wait for 10 ms and then take
an absorption image along a direction perpendicular to z [see
Fig. 2(a)]. In 10 ms the diffracted and non-diffracted portions
of the gas separate by ≈ 220 µm, while neither expands sig-
nificantly beyond the original size of the box-trapped cloud.

In Fig. 2(a) we show a typical variation of the diffracted
fraction of the gas with the duration of the Bragg pulse, τ , for
our chosen Ω = 2π × 1.8 kHz (see [31]). In the background
we show representative absorption images of the stationary
(bottom) and diffracted (top) clouds.

Assuming that we perfectly filter out the condensate from
the high-k components of the gas, the condensed fraction of
the cloud is given by the maximal diffracted fraction, η, ob-
served for τ = π/Ω ≈ 0.28 ms. We see that η is slightly
below unity, which is expected due to quantum depletion, but
can in practice also be observed for other reasons, including
experimental imperfections and the inevitably nonzero tem-
perature of the cloud. It is therefore important that our mea-
surements are differential - we study the variation of η with a,
while keeping other experimental parameters the same. It is
also crucial to verify that the tuning of η with a is adiabatically
reversible, which excludes the possibility that the condensed
fraction is reduced due to non-adiabatic heating or losses.

In Fig. 2(b) we focus on τ ≈ π/Ω, and show measure-
ments for three different experimental protocols: for a cloud
prepared at 700 a0, after increasing a to 3000 a0, and after
reducing it back to 700 a0 (see inset). We see that η is indeed
reduced when a is increased, and also that this effect is fully
reversible (within experimental errors); we have verified such
reversibility for our whole experimental range of a values.

In Fig. 3 we summarise our measurements of the variation
of η with the interaction parameter

√
na3. We observe the

expected linear dependence, with η(0) close to unity. Fitting
the data with η(0)(1−γ

√
na3) gives γ = 1.5(2), in agreement

with Eq. (1).
Finally, we numerically assess the systematic effects on γ

due to non-infinite L/ξ and a small nonzero temperature T ,
which are both . 20%, and partially cancel. The results
of this analysis are shown in the inset of Fig. 3; for details
see [31]. The dashed line shows the simulated η for T = 0 and
our values of n, L and Ω. For any non-infinite Ω, the tails of
the BEC momentum distribution are not fully captured by the
Bragg pulse, which slightly reduces η(0). More importantly,
we diffract some of the quantum-depletion atoms, which re-
duces the apparent γ. A linear fit (omitted for clarity) gives
that for T = 0 we actually expect γ ≈ 1.2. The small sys-
tematic differences between our data and this simulation can
be explained by a small nonzero temperature. A nonzero tem-
perature generally reduces η due to thermal depletion, the mo-
mentum tails of which are not diffracted by the Bragg pulse.
Moreover, if the gas is initially prepared (at 200 a0) at a small
T > 0, this does not merely reduce η by a constant offset
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FIG. 3. Measurement of the quantum depletion. We plot the max-
imal diffracted fraction η versus the interaction parameter

√
na3. A

linear fit (solid line) gives η(0) = 0.954(5) and γ = 1.5(2). Ver-
tical error bars show fitting errors, while horizontal ones reflect the
uncertainty in the position of the Feshbach resonance and a 10% un-
certainty in n. Inset: Analysis of systematic effects. We show numer-
ical simulations for T = 0 (dashed line) and for initial temperatures
(at a = 200 a0) between 3.5 and 5 nK (orange shading, from top to
bottom); see text and [31] for more details.

(independent of
√
na3), but slightly increases the apparent

γ; even adiabatically increasing a increases the thermal de-
pletion, because it modifies both the dispersion relation and
the particle content of the thermally populated low-k excita-
tions [28, 31]. As indicated by the orange shaded region, our
data are consistent with an initial T between 3.5 and 5 nK;
this is compatible with the fact that we do not discern the
corresponding thermal fractions of . 10% in time-of-flight
expansion at 200 a0, and is reasonable for our trap depth of
≈ 20 nK. Due to these effects the expected dependence of η
on
√
na3 is also not perfectly linear, but this effect is negligi-

ble on the scale of the experimental errors.
In conclusion, within a 15% statistical error and 20% sys-

tematic effects, we have quantitatively confirmed the Bogoli-
ubov theory of quantum depletion of a Bose–Einstein con-
densate, which is one of the cornerstones of our understand-
ing of interacting quantum fluids. The largest interaction
strength that we could reliably explore is already at the limit of
agreement between Bogoliubov’s analytical theory and Monte
Carlo simulations; adiabatically increasing

√
na3 by another

factor of two should allow quantitative studies of the regime
where the two theories disagree at the level of our demon-
strated experimental precision (see [31]). The methods em-
ployed here could be extended to study the momentum distri-
bution of the quantum depletion, and could also be useful for
sensitive thermometry of homogeneous ultracold Bose gases.
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