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Exactly solvable models have played an important role in establishing the sophisticated modern understand-
ing of equilibrium many-body physics. And conversely, the relative scarcity of solutions for non-equilibrium
models greatly limits our understanding of systems away from thermal equilibrium. We study a family of non-
equilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model,
in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward
states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of
these models can be solved efficiently. We leverage these solutions to compute the effects of decoherence on a
canonical trapped-ion-based quantum computation architecture, and to prove a no-go theorem on steady-state
phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions.

The understanding of equilibrium many-body physics in
both classical and quantum systems has relied heavily on ex-
act solutions of simplified models. For example, solutions
of the classical and quantum (transverse-field) Ising models
have elucidated the structure of classical and quantum phase
transitions, respectively [1, 2], and the connections between
them. For quantum systems that are not in thermal equilib-
rium such solutions are comparatively scarce, though impor-
tant progress has been made in numerous specialized mod-
els that either: (a) are isolated and one-dimensional or har-
monic [3–7], (b) impose nontrivial dissipation on otherwise
free bosons or fermions [8–17], (c) impose highly fine-tuned
dissipation [14], or (d) are coupled to an environment only
at a boundary [18–21]. On the other hand, interacting quan-
tum spin systems that are dissipative in the bulk and driven
so that they do not thermalize are expected to exhibit a vari-
ety of behaviors not found in equilibrium, including unusual
multi-critical points [22], new critical exponents [23], and
the existence of zero-entropy entangled steady states [24–27].
And, naturally, such systems play a central role in the the-
ory of quantum computation in the presence of decoherence.
While recent experimental advances have enabled the con-
trolled study of such physics in systems ranging from exciton-
polariton fluids [28–32], to trapped ions [33, 34], to Rydberg
gases [35–37], the minimal microscopic models expected to
capture the essential qualitative physics—many-body quan-
tum master equations [23]—continue to pose severe chal-
lenges to existing theoretical techniques.

In this manuscript we investigate a broad and experimen-
tally relevant class of driven-dissipative many-body spin mod-
els, some of which can be viewed as dissipative analogues of
the transverse-field Ising model (TFIM), and show that they
can be solved efficiently. The TFIM captures a characteris-
tic feature of low-temperature quantum systems more gener-
ally: Even at zero temperature, the ordering associated with
a classical Hamiltonian (the Ising model) can be frustrated by
the persistence of quantum fluctuations induced by the trans-
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FIG. 1. In the transverse-field Ising model (left panel) ordering with
respect to a “classical” Hamiltonian Ĥ =

∑
j,k h j,kσ̂ jσ̂k is frustrated,

even at T = 0, because the ground state of the transverse field (ex-
pressed as a density matrix) does not commute with Ĥ. The models
solved here generalize this scenario to the case where order is frus-
trated by the inclusion of a dissipative process whose steady state
does not commute with Ĥ. In the example shown (right panel),
Markovian dissipation implemented by jump operators σ̂

y
j − iσ̂z

j
drives each spin towards the ground-state of a transverse field.

verse field (Fig. 1, left panel). In particular, the transverse
field favors a zero-temperature density matrix that does not
commute with the Ising Hamiltonian. As a result, energy
minimization forces the system to develop quantum correla-
tions, and—except in certain very special circumstances, e.g.
nearest-neighbor interactions in 1D—one must resort to ap-
proximate methods or sophisticated numerics [38–40] to cal-
culate system properties. The models we consider realize a
non-equilibrium analogue of this scenario, in which a clas-
sical Hamiltonian is frustrated by the presence of dissipative
fluctuations (Fig. 1, right panel) [25, 41, 42]. Strikingly, we
find that the inclusion of a broad class of dissipative processes
favoring a steady-state density matrix that does not commute
with the Hamiltonian is relatively benign. In particular, oper-
ators in the Heisenberg picture remain dynamically localized
for finite-ranged Hamiltonians, enabling the time-dependence
of correlation functions to be efficiently obtained (even for
an infinite system) by solving a finite-dimensional system of
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equations. This structure exists, for example, even when dis-
sipation alone drives the system towards a dark state that is the
ground state of a transverse field. It also exists when the dissi-
pation is explicitly derived from a fluctuating transverse field;
evidently, even though the Ising model is not generally ex-
pected to be solvable in the presence of a particular (static or
time-varying) transverse field, the dynamics of the transverse-
field Ising model averaged over all such fields can be com-
puted exactly.

To illustrate the utility of these solutions we exploit them
to prove that an experimentally relevant subset of the mod-
els considered possess a finite dissipative gap, and therefore
cannot undergo dissipative phase transitions. We then apply
this result to a model of interacting Rydberg atoms studied in
Refs. [43, 44], thereby confirming the structure of the phase
diagram inferred from recently developed approximate tech-
niques [45]. From a more applied perspective, we emphasize
that Ising-like Hamiltonians, despite being “classical”, induce
truly quantum dynamics and play a central role in the produc-
tion of states sought for quantum information tasks [46–48].
Their solvability in the presence of dissipation thus affords nu-
merous exciting opportunities to investigate the effect of de-
coherence on the generation of useful entangled states. As
an illustrative example, we compute the effects of a fluctuat-
ing transverse field (dephasing) on Ising dynamics generated
by Mølmer-Sørensen gates [48–50], which can impose impor-
tant technical limitations in trapped-ion based approaches to
quantum computation [51].

Dissipative models.—The models we consider can be con-
structed in close analogy to the spin-1/2 transverse-field Ising
model. There, one starts with an Ising Hamiltonian

Ĥ =
∑

j,k

h j,kσ̂
z
jσ̂

z
k, (1)

which is “classical” in the sense that it can be diagonalized
by a choice of local basis. Therefore, its eigenstates (e.g.,
|↑z, ↓z, . . . , ↑z, ↓z〉) are in one-to-one correspondence with the
configurations of a classical Ising model; they have well de-
fined local values of the z-component of spin, and in this sense
there are no quantum fluctuations [52]. In equilibrium, a nat-
ural question to ask is how one can modify Ĥ such that, in
the low temperature limit where thermal fluctuations vanish,
quantum fluctuations remain. One simple strategy is to add
single-body terms to the Hamiltonian that are not diagonal-
ized by the eigenstates of Ĥ. The usual culprit is a trans-
verse field, resulting in the tranverse-field Ising Hamiltonian
ĤTFIM = Ĥ + B

∑
j σ̂

x
j . For B , 0, even at zero temperature

(i.e. in the quantum ground state of HTFIM) there will be fluc-
tuations between the classical eigenstates of Ĥ.

In a driven-dissipative setting, we are no longer interested
in properties of the ground state, which control the low-
temperature equilibrium physics, but rather the properties of
the steady state, which control the long-time, non-equilibrium
physics. A natural dissipative generalization of the procedure
used above to frustrate the zero-temperature ordering associ-
ated with Ĥ is to introduce single-body dissipative processes

that drive the system toward a steady state that does not com-
mute with Ĥ. Assuming that dissipation can be treated in the
Born-Markov approximation, the dynamics of an open quan-
tum system with Hamiltonian Ĥ is governed by a Markovian
master equation of the form [53–55]

˙̂ρ = L(ρ̂) ≡ −i[Ĥ, ρ̂] +D(ρ̂), (2)

where D(?) ≡ ∑
j,α

γ jα

2
(
2Ĵ jα ? Ĵ†jα − {Ĵ†jα Ĵ jα, ?}

)
. The dissi-

pation is induced by jump operators Ĵ jα, each of which we
assume to be supported on a single site j. The index α may
take on multiple values in order to describe multiple dissi-
pative channels on a given site, though in what follows we
will generally consider only one jump operator on each site,
dropping the index α. Consider the dissipative dynamics in
the absence of the Hamiltonian, described by ˙̂ρ = D(ρ̂). The
steady-state solution of the purely dissipative dynamics is de-
termined implicitly by solving D(ρ̂dis) = 0. If ρ̂dis commutes
with the Hamiltonian, then it is automatically also a solution
of L(ρ̂) = 0 and thus is a proper steady state of the complete
dynamics including both coherent evolution and dissipation.
If it does not, then in close analogy to the ground state of the
TFIM we expect the steady state to possess fluctuations in the
sense of admixing of classical states [25, 41, 42].

Surprisingly, a large class of dissipators that frustrate the
classical Hamiltonian, i.e. for which [ρ̂dis, Ĥ] , 0, neverthe-
less admit exact solutions for the dynamics of observables. In
particular, suppose that

Tr
[
σ̂z

jD(σ̂±k )
]

= 0 (for all j, k). (3)

Note that this condition is automatically guaranteed for j , k
because we assume single-site jump operators, and therefore
D does not change the support of an operator. Thus only the
case j = k imposes an additional constraint on the form of the
jump operators. For Ĥ of the form in Eq. (1), we also have
Tr[σ̂z

j[Ĥ, σ̂
±
k ]] = 0, and therefore whenever the jump oper-

ators are chosen to satisfy Eq. (3), the complete Liouvillian
also obeys

Tr
[
σ̂z

jL(σ̂±k )
]

= 0 (for all j, k). (4)

Taken together with the equality Tr[1̂ jL(σ̂±k )] = 0, which fol-
lows trivially from the definition of L (and ensures the con-
servation of probability) regardless of the form of the jump
operators, Eq. (4) can be understood colloquially as a state-
ment that L, when applied to the density matrix in the z-basis,
does not map coherences (off-diagonal elements) onto popu-
lations (diagonal elements), as illustrated in Fig. 2a. In what
follows, we will show that finite-range Hamiltonians of the
form in Eq. (1), subjected to dissipation obeying Eq. (3), can
be solved efficiently in the thermodynamic limit.

There are many natural jump operators satisfying Eq. (3).
For example, dephasing, spontaneous emission, and incoher-
ent pumping along the z axis all do, and the models studied
here therefore subsume finite-range versions of the models
studied in [56, 57] (and realized experimentally in [33]) as
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FIG. 2. (a) Schematic representation of Eq. (4): In the z basis,L does
not map coherences to populations. Equivalently, in the Heisenberg
picture, L‡ does not map populations onto coherences. (b) When the
conditions described in (a) are met, the dynamics of any observable
supported on a subsystem A can be computed by identifying the
nearest neighbors of the set A , denoted B, tracing out the part of the
density matrix supported on C , and then solving the master equation
projected into the remaining finite-dimensional system.

special cases. However, all the examples of dissipation just
mentioned lead to steady states ρ̂dis that commute with Ĥ,
and thus the steady states in the presence of Ĥ remain trivial.
Examples of jump operators satisfying Eq. (3) but producing
steady states that do not commute with Ĥ include dephasing
along any direction in the xy plane; Ĵ = cos(θ)σ̂x + sin(θ)σ̂y,
or spontaneous emission along any axis in the xy plane; Ĵ =

σ̂z + i(cos(θ)σ̂x + sin(θ)σ̂y). Note that in the latter example,
ρ̂dis is the ground state of a transverse field.

Localization of correlations.—The time-dependent expec-
tation value of an arbitrary operator Ô, initially supported on
a set of sites A , can be written as

Schrödinger picture: Heisenberg picture:
O(t) = Tr

[
Ô exp(tL) ρ̂0

]
, O(t) = Tr

[
ρ̂0 exp(tL‡) Ô

]
.

(5)

The Heisenberg-picture expression utilizes the adjoint Liou-
villian L‡(Ô) = i[Ĥ, Ô] + D‡(Ô), with the adjoint dissipator
given by D‡(?) =

∑
j,α

γ jα

2
(
2Ĵ†jα ? Ĵ jα − {Ĵ†jα Ĵ jα, ?}

)
. Ô could

be, e.g., a product of two spin operators on different sites, in
which case O(t) is an equal-time correlation function. Equa-
tion (4) can be recast in terms of the Heisenberg-picture Liou-
villian as Tr[σ̂±jL‡(σ̂z

k)] = 0; thus, L‡ does not map popula-
tions onto coherences (Fig. 2a). This condition can be restated
in the following useful way: Referring to an operator as “di-
agonal on the set S ” if it commutes with all operators σ̂z

j for
j ∈ S , one can show that the set of operators that are diagonal
on S is closed under the action of L‡. With this structure in
mind, we refer toL‡ as diagonality preserving (in the z basis),
a property which plays a key role in the solution of Eq. (2).

To understand the solvability of the models under consid-
eration, it is helpful to remember why computing O(t) for
a many-body master equation is generally a difficult task.
Consider the expansion O(t) =

∑∞
n=0(tn/n!)Tr

[
ρ̂0Ôn

]
, where

Ôn = (L‡)nÔ, and take Ô0 = Ô to be a single-spin operator on
some site of the lattice. If Ĥ contains only nearest-neighbor
interactions, then Ô1 will contain products of two spin oper-

ators, supported on both the initial site and its nearest neigh-
bors. In general, we expect that Ôn contains terms with prod-
ucts between n (or at least of order n) spin operators supported
on a set of radius ∼ n, and the number of such operators grows
at least exponentially with n. Therefore, barring some simpli-
fying structure, computing the dynamics to order n in time is
exponentially difficult in n.

To see how this situation is avoided in the present con-
text, we take Ô to be initially supported on the set A , and
define the set of sites B that are nearest neighbors of A as
all sites outside of A for which a term in the Hamiltonian
has simultaneous support on A and B. We further define
C to be the complement of A

⋃
B (Fig. 2b). Because Ĥ

does not contain terms supported on both A and C , andD is
composed of local jump operators, we see that Ô1 ≡ L‡(Ô)
is supported entirely on A

⋃
B. Importantly, because L‡

is diagonality preserving, Ô1 is diagonal on B. Next con-
sider Ô2 = L‡(Ô1): Because Ô1 is diagonal on B, com-
mutation with the diagonal operator Ĥ (which does not con-
nect A to C ) cannot enlarge the support beyond A

⋃
B.

And, as was the case for Ô1, the diagonality-preserving na-
ture of L‡ ensures that Ô2 is diagonal on B. Iterating this
argument through a formal inductive proof [58], it follows
that Ôn is supported on A

⋃
B for all n. As a result, we

can write O(t) = TrA ⋃
B

[
ρ̂AB

∑∞
n=0(tn/n!)(L‡

AB
)nÔ

]
. Here,

ρ̂AB = TrC [ρ̂0] is the initial reduced density matrix obtained
by tracing over C , and LAB is obtained from L by eliminat-
ing all terms in Ĥ andD with support on C . Returning to the
Schrödinger picture we find our primary result,

O(t) = TrA ⋃
B

[
Ô exp(tLAB)ρ̂AB

]
. (6)

Thus O(t) can be computed efficiently (i.e. from an effective
problem defined within a finite system) whenever the Hamil-
tonian is of finite range, such that B is finite. It follows imme-
diately that correlations are localized for finite-ranged Hamil-
tonians. For example, consider a connected correlation func-
tion Cµν

jk ≡ 〈σ̂µj σ̂νk〉−〈σ̂µj 〉〈σ̂νk〉 (µ, ν ∈ {x, y, z}), and suppose the
system starts in a product state. If Ĥ is of finite range r (mean-
ing that h j,k = 0 whenever |r j − rk | > r), and sites j and k are
separated by a distance d jk > 2r (so that sites j and k do not
share any neighbors, and A

⋃
B decomposes into two dis-

joint sets), then it follows from Eq. (6) that 〈σ̂µj σ̂νk〉 = 〈σ̂µj 〉〈σ̂νk〉
at all times [59]. Therefore, Cµν

jk vanishes identically unless
d jk < 2r.

Applications.—Just as many-body ground states can sud-
denly change in character as a parameter in the Hamiltonian
is continuously adjusted, signaling a quantum phase transi-
tion, steady states can exhibit a sudden change when a pa-
rameter in the Liouvillian is continuously adjusted, signaling
a dissipative phase transition. While a quantum phase tran-
sition is associated with the closing of an energy gap in the
Hamiltonian’s spectrum, a dissipative phase transition is asso-
ciated with the closing of a dissipative gap in the Liouvillian’s
spectrum [60]. Consider the dissipative transverse-field Ising
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FIG. 3. Quench in the fluctuating-transverse-field Ising model start-
ing with all spins polarized along +y (10 spins in 1D with periodic
boundary conditions, γ = J/4).

model studied in Refs. [43, 44],

ĤTFIM = J
∑

〈 j,k〉
σ̂z

jσ̂
z
k + ∆

∑

j

σ̂x
j , Ĵ j =

1
2

(σ̂y
j − iσ̂z

j), (7)

in which fluctuations due to both dissipation (strength γ) and
a transverse field (strength ∆) are considered. Note that in the
absence of the Ising term the dissipation drives the system into
a dark state |↓x, . . . , ↓x〉. Thus either dissipation or energy min-
imization with respect to the transverse field (for ∆ > 0) drives
the system towards the same state. If ∆ = 0 (for arbitrary J, γ),
the model is of the form assumed in Eq. (1) and the dissipator
satisfies Eq. (3), so our solutions can be applied. In Ref. [44],
a careful analysis of the variational techniques developed in
[45] suggests that the system is disordered for any value of γ
at ∆ = 0 in high dimensions. Here, we can make this conclu-
sion rigorous in any dimension: By exploiting the solvability
of the model, it can be proven [58] that at ∆ = 0 there must
be a finite dissipative gap ≥ γ. Since the model is disordered
at γ = ∞ and a gap exists at ∆ = 0 for any γ > 0, it must
be disordered along the entire ∆ = 0 axis. Given the Liou-
villian stability results of Ref. [61], a dissipative gap at ∆ = 0
may actually imply something much stronger: a gap persists
for small ∆ > 0, ruling out a phase transition for ∆ . γ and
implying that the system is disordered for sufficiently small ∆

at any γ > 0.
The solutions developed here can also be used to calculate

dynamics of the Ising model in the presence of a fluctuating
transverse field [62, 63],

ĤfTFIM(t) = J
∑

〈 j,k〉
σ̂z

jσ̂
z
k +

∑

j

∆ j(t) σ̂x
j . (8)

Here the transverse fields ∆ j(t) are Gaussian random variables
with white-noise spectrum, ∆ j(t1)∆k(t2) = γδ j,kδ(t1 − t2), and
observables are to be computed with respect the stochastic
Schrödinger equation ∂t |ψ(t)〉 = −iĤfTFIM |ψ(t)〉. This model
arises naturally in ion trap experiments, where it captures
the important effects of qubit dephasing along the quantiza-
tion axis during Ising dynamics induced by Mølmer-Sørensen
gates [48–51], and hence it plays a prominent role in the
description of decoherence effects on trapped-ion based ap-
proaches to quantum computation. Note that the brute-force
solution of this model requires averaging over the dynamics of

an Ising model with a time-dependent transverse field, which
cannot (in general) be done efficiently. Nevertheless, it is well
known that this model can be mapped exactly onto the master
equation [64, 65]

˙̂ρ = −i[J
∑

〈 j,k〉
σ̂z

jσ̂
z
k, ρ̂] + γ

∑

j

(σ̂x
j ρ̂ σ̂

x
j − ρ̂), (9)

which obeys Eq. (3) and thus can be efficiently solved by the
methods developed here [see also Refs. [66, 67] for a con-
structive approach to Eq. (9) starting from Eq. (8)].

In Fig. 3 we show numerical simulations of the stochastic
Schrödinger equation starting from an initial state polarized
along the y direction, |ψ(0)〉 = |↑y . . . ↑y〉. These simulations
are computationally very expensive as they require a large
sampling of the solutions to an exponentially large set of cou-
pled differential equations with random transverse field val-
ues, and they are not feasible for more than ∼ 10 spins (giving
in this case a system of 210 ordinary differential equations to
sample from). However, one can clearly see that the average
over sufficiently many samples converges to the results ob-
tained from the exact solution of Eq. (9) (black-dashed line).

Outlook.—The underlying algebraic structure exploited
here persists in a much more general class of Hamiltonians
that are solvable in the absence of dissipation. For example,
our results can be generalized to systems with arbitrary finite-
dimensional Hilbert spaces on each site and time-dependent
Hamiltonians. Long-range interactions spoil some aspects of
the solution, but the absence of dissipative phase transitions
can still be proven. Hamiltonians that are not diagonalized
by a local choice of basis but can still be written as a sum of
local commuting terms, such as the toric code [27, 68], are
amenable to similar solution techniques and will be explored
in future work.
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