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1Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
2Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

3Center for Quantum Spintronics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

We show how the interference between superfluid spin currents can endow spin circuits with co-
herent logic functionality. While the hydrodynamic aspects of the linear-response collective spin
transport obviate interference features, we focus on the nonlinear regime, where the critical super-
current is sensitive to the phase accumulated by the condensate in a loop geometry. We propose to
control this phase by electrical gating that tunes the spin-condensate coherence length. The non-
linear aspects of the spin superfluidity thus naturally lend themselves to the construction of logic
gates, uniquely exploiting the coherence of collective spin currents. Vice versa, this functionality
can be used to reveal the fundamental properties of spin superfluids.

Introduction.—Spin currents in insulators open the
possibility to transmit angular momentum with no asso-
ciated charge flow. This may ultimately eliminate Joule
heating, a prevalent dissipation mechanism in electronic
and spintronic devices based on charge currents. In mag-
netic insulators, spin flows can be carried by magnons [1],
the quanta of the collective electron-spin excitations (spin
waves). Spin currents generated by spin pumping [2],
thermal fluctuations [3], and electrical spin Hall injection
[4] have been studied in insulating ferrites and ferrimag-
netic garnets like magnetic Y3Fe5O12 and compensated
Gd3Fe5O12. Inherently, insulating magnets exhibit low
damping, enabling long-distance propagation and thus
efficient spin transport. The detection of magnonic spin
currents is typically achieved by means of the inverse
spin Hall effect [5] in an adjacent heavy-metal layer. At
present, the magnonic currents generated by spin injec-
tion are conventionally diffusive in nature [4], exhibiting
incoherent propagation and an exponential decay with
increasing distance.

On the applications side, it was shown that magnon-
based logic operations can be realized in structures em-
ploying yttrium iron garnet as a spin conduit. Incoherent
magnons have been used in Ref. [6], based on the addi-
tion of diffusive spin-transport signals. To exploit the
wave nature of magnons, however, phase coherence has
to be used to allow for interference effects. In partic-
ular, complex functions like majority gates, which con-
ventionally require many semiconductor transistors, can
be implemented easily using phase-coherent magnons [7].
A coherent spin-wave bus thus enables the implemen-
tation of fully-functional superposition-based magnonic
logic, highlighting the potential of this new information-
processing approach. However, so far, the necessary co-
herent magnons are typically generated using microwave
excitations with antennas [1], an approach that does
not scale well for applications. Parametrically-pumped
magnon condensates [8] offer another route towards co-
herent magnon dynamics [9] and the associated collective
spin currents [10], albeit requiring a steady energy supply
to overcome magnon damping.

To fully exploit the power of coherent spin transport
in practice, one needs to realize an on-chip dc generation
of superfluid spin flows. To this end, we study the in-
terference of multiple coherent collective spin currents in
easy-plane magnets [11]. We find that while the hydrody-
namic aspects of the spin superflow preclude interference
in linear response, efficient interference effects are found
in the nonlinear regime. Specifically, by exploiting a loop
geometry with two coherent spin-current branches, we in-
vestigate the role of the interference in determining the
critical spin-superfluid transmission. Finally, we suggest
to use this result to implement logic functions.

Spin superfluidity in linear response.—In Refs. [12], a
collective spin current polarized along the z axis and
transmitted via the easy-xy-plane magnetic dynamics
[11] was proposed to be injected (detected) using the
(inverse) spin Hall effect [5]. The associated spin cur-
rent, js = −A∂aϕ [see Fig. 1(a), in the quasi-one-
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FIG. 1. Hydrodynamic spin transport in linear response. (a)
Single channel of length l collectively transmitting spin cur-
rent ∝ ∂aϕ, which is injected on the right at the rate ∝ µs.
Spin pumping ∝ ∂tϕ ejects spin currents at both ends, and
along the length of the conduits Gilbert damping α leads to
an attenuation. (b) Superposition of two similar spin flows in
a loop geometry composed of two branches of lengths l1(2). ϕ
here is the azimuthal angle of easy-plane magnetic dynamics.
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dimensional (1D) geometry parametrized by a], mimics
closely the mass flow in a neutral superfluid [13], while
the boundary conditions js = g(µs − ∂tϕ), which re-
flect the injection and detection of spin at the channel’s
ends, are akin to the Andreev reflection at the normal-
metal|superconductor interfaces [14]. ϕ here is the pre-
cession angle of the magnetic order parameter in the easy
plane, A is the order-parameter stiffness, µs is the (spin
Hall-induced) spin accumulation (polarized along the z
axis) in the normal-metal contacts, and we are assum-
ing linear response (with only a small tilting of the order
parameter out of the xy plane). A crucial property of
magnetic materials is Gilbert damping, which, in this
regime, sinks the angular momentum at the rate of α∂tϕ
per unit length, governed by dimensionless parameter α.

In a steady state established in response to the dc bias
µs, the frequency ∂tϕ ≡ ω must be uniform along the
full length of the channel. Balancing the spin flow at
the boundaries (assuming the same spin conductances g)
with the net Gilbert-damping loss αωl, we obtain ω =
µs/(2 + αl/g). In the loop geometry of Fig. 1(b), where
one may anticipate interference features, the steady-state
frequency is instead given by a similar expression as
above, only replacing l → l̃ = l1 + l2, i.e., with the total
circumference of the circuit. Since the output spin cur-
rent is given by gω, it does not depend on the spin texture
∂aϕ and the associated stiffness A for low excitations.

As the input bias µs is increased and the order-
parameter winding ∂aϕ is progressively stepped up in
response, however, it will develop inhomogeneously along
the loop branches. While it has no consequence for the
transmitted signal in the linear response, it will have an
effect on the Landau-like criterion for the superflow sta-
bility [11]. In particular, we may anticipate a larger criti-
cal current to correspond to a more uniform distribution
of the flow along the two branches in the geometry of
Fig. 1(b). This condition, in turn, is sensitive to the in-
terference of the two spin supercurrents, which can be
controlled by the relative lengths of the two branches, in
units of the respective coherence lengths. The nonlinear
spin transport through the multiply-connected circuits
can thus be controlled geometrically as well as by gating
relevant magnetic properties along the lengths of the spin
conduits. This will provide the basis for logic functional-
ity as detailed later.

We next study collective nonlinear dynamics and spin
transport in a (ferro)magnetic insulator, within the
Landau-Lifshitz-Gilbert (LLG) phenomenology [15] for
bulk dynamics and the spin Hall phenomenology [16] for
the spin injection and detection at the boundaries. Af-
ter briefly summarizing the pertinent equations, we will
study the stability of spin superflow in the geometries of
Fig. 1, with a focus on the loop geometry that will yield
interference and allow for logic functionality.

LLG theory of the nonlinear spin transport.—The

(nonlinear) LLG dynamics in the (insulating) bulk,

s(1 + αn×)ṅ = δnF × n + τ , (1)

is constructed in terms of the free-energy functional

F [n] =

∫
d3r

[
A(∂in)2 +Kn2z

]
/2 . (2)

τ here stands for any applied spin torques, s is the equi-
librium spin density, and K > 0 is the superfluidity-
stabilizing [11] easy-plane anisotropy. The order pa-
rameter undergoes directional dynamics constrained by
|n| ≡ 1. We can rewrite Eq. (1) as a hydrodynamic con-
tinuity equation:

s(1 + αn×)ṅ = −∂iji +Knzz× n + τ , (3)

where ji ≡ −An × ∂in is recognized to be the spin flow
in the ith direction.

For the boundary conditions, attaching a heavy metal
with the interface area S and normal k results in the
spin-injection current density (i.e., torque per unit area)

js = j(SH)
s −j(pump)

s = ϑn×(k×j)×n−gn×ṅ→ δτ

δS
, (4)

where j is the electrical current density applied to the
metal. ϑ ≡ (~/2e) tan θSH, in terms of the effective spin
Hall angle θSH, and g ≡ (~/4π)g↑↓, in terms of the effec-
tive spin-mixing conductance (per unit area) g↑↓, both in-
cluding the interplays of the spin Hall and spin-pumping
injection, reflection, and backflow of electron spins in the
metal. We are keeping here only the leading-order in
spin-orbit interaction effects [16]. We will henceforth set
k→ x and j→ jy, so that k× j→ jz. The same metal
can be used for detecting magnetic dynamics, according
to the Onsager-reciprocal spin-motive force [16]:

ε = ϑ(n× ṅ)× k = ϑj(pump)
s × k/g , (5)

which, in a closed circuit, would induce the current den-
sity j = σε/d, where σ is the metal film’s conductivity
and d its thickness.

Let us parametrize n(θ, ϕ) by the polar angle θ and
the azimuthal angle ϕ. Let (n,θ,ϕ) be the local (right-
handed) coordinate system, such that

∂in = θ∂iθ +ϕ∂iϕ sin θ . (6)

It then follows that

∂i(n× ∂in) =− θ∂i(∂iϕ sin2 θ)

sin θ

+ϕ

[
∂2i θ −

1

2
(∂iϕ)2 sin 2θ

]
.

(7)

Projecting the LLG equation (1) in the bulk on θ and ϕ,
we respectively get

s(θ̇ − αϕ̇ sin θ) = −A∂i(∂iϕ sin2 θ)

sin θ
(8)
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and

s(ϕ̇ sin θ + αθ̇) = A

[
∂2i θ −

(∂iϕ)2

2
sin 2θ

]
+
K

2
sin 2θ .

(9)
Switching to the natural units for the problem, we mea-
sure ∂t in units ofK/s and ∂i in units of

√
K/A (the mag-

netic speed of sound then becomes c =
√
KA/s → 1).

The bulk equations of motion then become dimension-
less as s, A, and K drop out.

Critical superflow in a single conduit.—In a 1D super-
fluid channel of length l, whose position is parametrized
by a, the bulk equations (8) and (9) reduce to

θ̇ − αϕ̇ sin θ = −∂a(∂aϕ sin2 θ)

sin θ
,

ϕ̇ sin θ + αθ̇ =

[
∂2aθ +

1− (∂aϕ)2

2
sin 2θ

]
.

(10)

Placing the normal metals at the two ends (a = 0 and l),
the boundary conditions projected onto θ result in

a = 0, l : (∓∂aϕ+ gϕ̇− j) sin θ = 0 , (11)

and for ϕ:

a = 0, l : ∂aθ ∓ gθ̇ = 0 . (12)

Here, the dimensionless constants g ≡ (g/s)
√
K/A and

j ≡ ϑj/
√
AK (which may be different at the two ends)

parametrize the strengths of the spin pumping and the
spin Hall torques at the interfaces. They both may in-
clude the geometric enhancement factor S/Sm (where Sm

is the magnetic wire cross section), which we are omit-
ting for simplicity. However we note that analogous to
a hydrodynamic description using a tapered geometry,
potentially one can enhance the spin current density by
this geometrical factor. We are supposing that the metal
contacts are on top of the magnet with the same normal
k (on the bottom, the relative sign in front of j would
flip, as in our original Ref. [12]). Let us note that θ ≡ 0
is a good solution (albeit possibly unstable) of Eqs. (10)-
(12), as all the spin torques and currents vanish in this
trivial case.

In a stable dynamic steady state, we can set θ̇(a, t) ≡ 0
and ϕ̇(a, t) ≡ ω (constant). Defining v ≡ −∂aϕ (corre-
sponding to the velocity of the superfluid condensate),
we rewrite the above equations as

−αω sin2 θ = ∂a(v sin2 θ) ,

ω sin θ =
[
∂2aθ + (1− v2) sin θ cos θ

]
,

(13)

with the boundary conditions (supposing θ 6= 0)

a = 0, l : ± v + gω − j = 0 , ∂aθ = 0 . (14)

Note that v → 1 corresponds to the Landau criterion,
according to which a static spiral becomes energetically

unstable [11]. We can see this from the energy density in
Eq. (2), which is ∝ (1−v2)n2z, in our units: At v > 1, the
uniform out-of-plane state nz ≡ 1 has the lowest energy.

Let us start by looking for solutions with a constant
θ 6= 0. From Eqs. (13), we then get:

−αω = ∂av and ω = (1− v2) cos θ . (15)

It is clear that a constant-θ solution implies also a con-
stant v, which requires that either α or ω vanish. ω → 0,
furthermore, necessitates j ≡ j(0) = −j(l). In this case,
v = j carries the spin Hall-injected spin current between
the contacts without any dissipation. θ = π/2 up to
j → 1, at which point there is a first-order phase tran-
sition to θ = 0, for j > 1. Setting α = 0 would gener-
ally result in constant-θ solutions. Supposing g entering
Eqs. (14) is the same at both ends,

v =
1− p

2
j , ω =

1 + p

2g
j , and cos θ =

ω

1− v2 , (16)

where j(0) = j and j(l) = pj, with p parametrizing the in-
jection polarization. In the antisymmetric case, p = −1,
we reproduce the above finite-v, zero-ω solution (since
in the absence of dynamics, the Gilbert damping is in-
consequential). In the symmetric case, p = 1, a finite-θ
solution (with finite ω and zero v) exists up to the criti-
cal bias jc = g. For an arbitrary p, the critical bias jc is
reached when ω = 1− v2. We can see that jc ≤ 2/(1− p)
and 2g/(1 + p), corresponding respectively to v, ω ≤ 1.

When p 6= −1, the steady-state solutions are dynamic
and the critical angle θ → 0 is reached in a second-order
fashion (cf. Fig. 2). The transmitted (z-polarized) spin-
current density, in this case,

js = sv(1− cos2 θ) , (17)

is maximized at some intermediate bias, between 0 and
jc [i.e., the critical point where θ vanishes; note that both
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j
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FIG. 2. Spin current (17), which governs the detected motive
force ε = ϑjs/g, in the case of p = 0 and choosing g = 2. Note
that the picture would simply flip for the opposite bias, j < 0.
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v and θ here depend on j according to Eqs. (16)]. This
means that one can maximize the injected spin current
density by choosing the appropriate injector current. In
the special case when p = 0 (corresponding to the injec-
tion at a = 0), the transmitted spin current,

js = sj(1− cos2 θ)/2 , (18)

will result in the (y-oriented) motive force (5) ε = ϑjs/g.
Nonlinear superflow interference.—We now turn to the

interference of spin superflows along two channels con-
nected at the ends. Representing them as a circle, we
start with the simplest case of two metal contacts: injec-
tor at a = 0 and detector at a = l′, with the full loop
length given by l. Barring superfluid phase slips [17], we
restrict θ to the interval of (0, π). In other words, the spin
texture is not allowed to sweep over the south or north
poles. This allows us to define the topological invariant

2πn =

∫ l

0

da v , (19)

corresponding to the azimuthal-angle winding number
n ∈ Z of the order-parameter texture placed on the circle.

We are looking for steady-state solutions of the same
bulk Eq. (13), adjusting the boundary conditions as

a = 0, l′ : v|+− + gω − j = 0 , ∂aθ|+− = 0 . (20)

See Fig. 3 for a schematic explaining the geometry and
notation. In the absence of damping, α → 0, and for
subcritical driving, let us look for the superfluid velocities
that are uniform in the two sections, given by v1 and v2,
while the polar angle θ is the same throughout. Setting
j(0) = j and j(l′) = 0,

v2 − v1 = gω − j and v1 − v2 = gω , (21)

l0

0, l

v1

v2 ⌦
x

y

z

j

✏

+
�

+
�

�

R

⇠

a

FIG. 3. Schematic of the circular configuration to exhibit
interference of two (nonlinear) spin superfluids. The critical
current is maximized at special relative angles φ between the
injector and detector leads, which are determined by ξ/R ac-
cording to Eq. (24).

subject to the topological constraint (19): v1l
′ + v2(l −

l′) = 2πn. We thus find:

v1− v2 =
j

2
and

v1 + v2
2

=
j

2

(
1

2
− l′

l

)
+

2πn

l
. (22)

The frequency ω = j/2g (which governs the detected mo-
tive force) is l′ independent. Note that the frequency
ω = (1 − v2) cos θ can generally not be the same for a
common angle θ in the two sections. This means that
the above steady-state solution would be valid only in
the linear-response regime. In the general nonlinear case,
θ(a) must develop inhomogeneities, with the exception of
the special scenarios that yield |v1| = |v2| according to
Eq. (22).

We could initialize a uniform state with n = 0, in the
absence of a bias, followed by ramping up the current
j. If l′ 6= l/2, the two branches will transmit the input
current asymmetrically, so that a critical current would
be reached in one of them before the other. The tex-
ture can then undergo a phase slip to a different winding
number n, depending on the ratio l′/l, with a possibil-
ity to reach a steady state with a higher critical current.
The symmetrical (i.e., nonfrustrated) case, l′ = l/2, cor-
responds to the highest critical current jc, when n = 0,
so that v1 = −v2 = j/4 ≡ v. As before, jc is found from
ω = j/2g = 1 − v2. If g � 1, in particular, the critical
current is obtained from v → 1 and is thus twice the re-
sult for a single 1D channel (with p set to 0). In order to
maintain the symmetrical superfluid flow, v1 = −v2, al-
lowing us to reach the highest critical current, we obtain
the following condition from Eqs. (22):

jc
2

(
l′

l
− 1

2

)
=

2πn

l
. (23)

We thus get the maximal superflow at l′ = l/2 (and n =
0) as well as at the positional increments of

∆l′ = 4πn/jc . (24)

Note that, restoring the physical units , jc ∼ ξ−1, where
ξ ≡

√
A/K is the magnetic healing length. The size of

the ring thus has to be larger than but comparable to
this length scale, for the optimal geometric characteris-
tics and sensitivity.

If the current is applied symmetrically at both con-
tacts, j(0) = j(l′) = j, we find, according to Eqs. (20):
v1 = v2 = 2πn/l ≡ v and ω = j/g. The com-
mon polar angle and stability considerations result from
ω = (1 − v2) cos θ, as in the single-conduit case, yield-
ing an n-dependent critical current. In particular, since
n = 0 corresponds to the highest current, the n = 0 con-
figuration can be initialized by driving a symmetric bias
that is subcritical to this state only.

Discussion.—Our study focuses on the critical spin
current in multiply-connected geometries (cf. Fig. 3). As



5

the natural unit of length governing the superfluid phase
winding is set by the coherence length ξ [cf. Eq. (24)],
we may expect the strongest interference effects on the
critical flow for system sizes larger than ξ. The relative
phase between two superfluid branches may be tuned,
in practice, by locally varying A and/or K (and thus ξ).
This can be achieved, for instance, by electrostatic gating
[18] or a local strain [19]. We can thus control the trans-
mission of a large input signal by lowering or raising the
critical current. This can be used to accomplish the AND
and NOT logic gates, which together provide a complete
set for implementing any logic function. Exploring spin
dynamics in the supercritical regime, particularly with
an eye on tunable steady-state self-oscillations, may open
an interesting avenue of research. On another front, the
(heretofore disregarded) thermal phase slips [17] may of-
fer an alternative route for exploiting the interplay of
nonlinearities and interference of spin superfluids.
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R. Gross, H. Huebl, and S. T. B. Goennenwein, Appl.
Phys. Lett. 109, 022405 (2016).

[7] S. Klingler, P. Pirro, T. Brächer, B. Leven, B. Hille-
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B. Krüger, M. Jourdan, C. A. F. Vaz, J. Hockel,
T. Miyawaki, A. Tkach, S. Valencia, F. Kronast, G. P.
Carman, F. Nolting, and M. Kläui, Phys. Rev. Appl. 1,
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