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Quantum Hall states can be characterized by their chiral edge modes. Upon softening the edge
potential, the edge has long been known to undergo spontaneous reconstruction driven by charging
effects. In this paper we demonstrate a qualitatively distinct phenomenon driven by exchange effects,
in which the ordering of the edge modes at ν = 3 switches abruptly as the edge potential is made
softer, while the ordering in the bulk remains intact. We demonstrate that this phenomenon is
robust, and has many verifiable experimental signatures in transport.
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Shortly after the discovery of the integer quantum Hall
effect (QHE) it was realized that the edges of an incom-
pressible electron gas play a crucial role in transport [1].
In a quantum Hall state, the bulk has a charge gap. Near
a sharp edge, gapless chiral modes [2] carry the current
between the contacts, consistent with the topologically
protected transport observables of the QHE.

In the early 90s it was realized that both integer [3–5]
and fractional [6, 7] edges reconstruct as the slope of the
edge confining potential Vedge(y) is made smoother. Re-
construction is the modification of the position and/or
the number and nature of the edge modes [3–9]. Sub-
sequently, various manifestations of edge reconstruction
have been observed in the QHE regime [10–14], and theo-
retically studied in many QHE states [15–20] and in time
reversal invariant topological insulators [21].

Edge reconstruction is driven by charge effects [22],
as seen by the work of Dempsey et al. [4] who stud-
ied the unpolarized filling factor ν = 2. For a sharp
edge, the n = (0↑) and the n = (0↓) single-particle levels
cross the chemical potential µ at the same location, with
a sharp change in electron density there. As Vedge(y)
is made smoother, the ↑ and ↓ crossing points sponta-
neously move away from each other, making the density
variation smoother at the edge.

In this work we focus on the edge of a ν = 3 quan-
tum Hall state and uncover edge phenomena driven by
spin exchange rather than charge effects [22]. The bulk
remains inert at the parameters we consider and only
the edge shows a phase transition. We find that, de-
pending on parameters, the order of the two inner or the
two outer edge channels switches as Vedge(y) becomes
smoother. No charge reconstruction is observed in the
regime where spin-mode-switching occurs. Our analysis
indicates that the phase transitions are first-order. In
designed geometries with controlled edge steepness and
quantum point contacts (QPCs), a host of phenomena
can serve as “smoking gun” tests of spin-mode-switching.
These include a change in the nature of the spin trans-

port through a single QPC system with and without spin-
mode-switching, and a qualitative change in the way dis-
order affects transport following a spin-mode-switching
transition.

To set the stage for our model, we define the cyclotron
energy ~ωc = ~eB

mb
(mb is the band mass), the interaction

scale Ec = ~ωcẼc = e2

4πε` where ε includes the dielectric

constant of the medium, and ` =
√
~/eB, the magnetic

length. We will work at tiny Zeeman coupling Ez � Ec.
In the Landau gauge eAx = − y

`2 , eAy = 0, the single-
particle wavefunctions of the nth Landau level (LL) in
a system with periodic boundary conditions in x can be
written as [23]

Φnk(x, y) =
eikxe−

(y−k`2)2

2`2√
2nn!Lx`

√
π
Hn

(
y − k`2

`

)
, (1)

where k = 2πm/Lx determines the position of the guid-
ing center along the y-axis. The Hamiltonian of the sys-
tem H = Hb + He -bg can be split into a electronic bulk
part Hb and the electron-background interaction He -bg

responsible for the confining potential Vedge at the edge.
The bulk Hamiltonian is

Hb = ~ωc
∑
nks

nc†nkscnks +
1

2LxLy

∑
~q

v(q) : ρe(~q)ρe(−~q) :

(2)
where the electron density operator ρe(x, y) =∑
s

Ψ†s(x, y)Ψs(x, y), Ψs(x, y) =
∑
n,k

Φnk(x, y)cnks, with

cnks being canonical fermion operators, and v(q) and
ρe(~q) are the Fourier transforms of the interaction v(~r −
~r′) and ρe(x, y). The possible translation-invariant
ground states of the ν = 3 bulk are |ψ1〉 = |0↑, 0↓, 1↑〉
(partially polarized) and |ψ2〉 = |0↑, 1↑, 2↑〉 (fully polar-
ized), where we only write the occupied spin-labelled LLs.
As Ẽc increases there is a bulk first-order transition [24–
26] driven by exchange from |ψ1〉 to |ψ2〉. In the Hartree-
Fock (HF) approximation this occurs at Ẽc ≈ 2.5 for the
Coulomb interaction.
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FIG. 1. (Color online) (a) The phase diagram. The background color represents the bulk phase, white being partially polarized
(|0↑, 0↓, 1↑〉) and blue being fully polarized (|0↑, 1↑, 2↑〉). States are labelled i = O (outermost), M (middle) and I (innermost).
The plain white region also denotes edge Phase A (O=0↑, M=0↓ and I=1↑). Edge Phase B (O=0↓, M=0↑ and I=1↑) is
horizontally hatched, while Phase C (O=0↑, M=1↑ and I=0↓) is vertically hatched. Due to poor convergence of the HF, for

6 ≤ w̃ ≤ 7, Ẽc ' 2.13 it is not clear whether there is a direct transition between Phases B and C, or whether Phase A intervenes.
In Figs. 1(b), 1(c) and 1(d) we depict S̄z(i, k) of the occupied single-particle states versus k` at Ẽc = 2.3. Only occupied levels
are depicted. The line for level i terminates where the level i crosses µ, with S̄z(i, k) at the µ-crossing defined as S̄zµ(i). The
insets depict the energy dispersions of the HF single-particle states vs. k`, with the horizontal black line being µ. In Fig. 1(b)
we are in Phase A (w̃ = 2.0) where no spin rotations occur. Fig. 1(c) shows S̄z(i, k) vs. k` at the transition (w̃ = 4.28), with
spin rotations occurring over a scale `, where the corresponding energy level dispersions come close together in an avoided
crossing (inset). Fig. 1(d) shows S̄z(i, k) vs. k` in Phase C (w̃ = 5.0). The spin rotations are quite abrupt, and occur where

the corresponding dispersions undergo a sharp avoided crossing. In Fig. 1(e) we plot S̄zµ(i) vs. w̃ at Ẽc = 2.3. A discontinuous

change in S̄zµ for the M and I levels is seen at the transition between Phases A and C. Similar results hold at Ẽc = 1.8 for the
Phase A to Phase B transition, with S̄zµ showing a discontinuous change for the O and M levels, as shown in Fig. 1(f).

The electron-background interaction is

He -bg =

∫
d2rVedge(y)ρe(x, y) (3)

where Vedge(y) = −
∫
d2r′ρb(y

′)v(~r − ~r′) is the edge con-
fining potential and ρb(y) is the positive background den-
sity. In our model the background density decreases lin-
early to zero over a distance W at the edge [5]. The di-
mensionless parameter w̃ = W/` characterizes the slope
of Vedge,

ρb(y) =

{ ρ0 y < −W2
ρ0

W
2 −y
W −W2 < y < W

2

0 y > W
2

. (4)

Theoretical Analysis: Our primary tool is the spin-
unrestricted Hartree-Fock (HF) approximation keeping
up to 6 spin resolved LLs to include the effect of LL-
mixing and spin-mixing. In the HF approximation, the
many-body state is replaced by a variational Slater de-
terminant, characterized by all possible averages 〈c†i cj〉.

We confine ourselves to translation invariant states, de-
scribed by 〈c†nkscn′k′s′〉 = δkk′∆ns,n′s′(k). In the bulk the
matrix ∆ns,n′s′ is independent of k and diagonal in n as
well as in s (no LL-mixing or spin-mixing). Near the edge
∆ns,n′s′ acquires a k-dependence, and LL-mixing/spin-
mixing will occur. The optimal Slater determinant that
minimizes the variational energy is found by an itera-
tive procedure carried out to self-consistency. At each
step, an effective one-body Hamiltonian (dependent on
∆ns,n′s′(k)) is solved and the energy levels filled up to a
chemical potential chosen to satisfy overall charge neu-
trality. The new state enables the computation of a
new set of ∆, giving the seed for the next iterative step
[27]. The results of the HF calculation are shown in
Fig. 1. We use a screened Coulomb interaction of the
form v(~q) = 2πEc

q+qsc
, where qsc is the inverse screening

length. The results shown are for qsc` = 10−2, though
spin-mode-switching persists at least up to qsc` = 0.5. In
unrestricted HF single-particle levels generically cannot
be labelled by spin and cannot cross due to level repul-
sion. We therefore label the edge modes by their location



3

as i = O(outermost), M(middle) and I(innermost). To
proceed further, we compute the quantum expectation
value S̄z(i, k) for each occupied single-particle state i at
position k`. The spin character of the chiral edge modes
transporting current are determined by the S̄z(i, k) of the
corresponding single-particle levels at the crossing with
the chemical potential, S̄zµ(i). This allows us to label an
edge mode with a spin.

Fig. 1(a) shows two edge-mode-switched phases. For
w̃ . 3, there is no spin-mixing, and the edges follow
the bulk order: O=0↑, M=0↓ and I=1↑. This is Phase
A. For 1.5 . Ẽc . 2.13 and w̃ > 3, the system enters
Phase B where the order of the edge modes is O=0↓,
M=0↑ and I=1↑. Phase C occurs for 2.13 < Ẽc < 2.5
and w̃ > 3.5, with the edge mode ordering O=0↑, M=1↑
and I=0↓. For 6 ≤ w̃ ≤ 7, Ẽc ' 2.13 HF converges
poorly, making it unclear whether there is a direct tran-
sition between Phases B and C, or whether a sliver of
Phase A persists between them. Fig. 1(b) shows S̄z vs.
k` of the three occupied levels near the edge at Ẽc = 2.3,
w̃ = 2.0 (Phase A). The lines terminate where the corre-
sponding level crosses µ. Fig. 1(b) inset shows the energy
dispersions of the self-consistent HF states for the same
parameters. Fig. 1(c) shows S̄z vs. k` at the A → C
transition (w̃ = 4.28), and Fig. 1(d) shows the same in
Phase C (w̃ = 5.0). Figs. 1(e), 1(f) show the expectation
value S̄zµ of the respective levels of O, M and I that in-

tersect the Fermi energy as a function of w̃ at Ẽc = 1.8
and 2.3. The spin characters of O, M and I show dis-

continuous jumps, which indicate 1st-order transitions in
our approximation. The electron charge density hardly
varies through the entire regime [22, 27].

The emergence of mode-switching is quite robust and
is qualitatively unaffected by including LL/spin mixing
to higher LLs (n > 2). Phases B and C occur over a
very broad range of w̃, (Phase C exists at least up to
w̃ = 11). Upon increasing the Zeeman coupling, the
bulk phase boundary between the partially and fully po-
larized states moves lower in Ẽc and Phase C encroaches
on Phase B. Furthermore, the lower boundary between
Phase A and Phase B in Fig. 1(a) moves upwards. Reduc-
ing the range of the interaction by increasing qsc` moves
the phase boundaries of edge phases B and C towards
larger w̃. Upon independently varying the strength of
the direct (Ecd) and exchange (Ecx) terms, we find that
mode-switching occurs in HF only if Ecx > 0.6Ecd, con-
sistent with our claim that this is an exchange effect [22].

To get beyond the HF limitation of single particle oc-
cupation being restricted to either 0 or 1 (at T = 0),
we investigated a class of variational states that do not
conserve particle number and allow continuously varying
0 ≤ n(k) ≤ 1. The simplest such state for the ν = 1

spin-polarized edge is |ψ〉 =
Ns∏
k=1

(uk + vke
iθkc†k)|0〉. Here

uk, vk (u2k + v2k = 1) are real numbers, and θk is a set
of phases chosen to minimize the translation-symmetry-
breaking inherent in such states. This class includes HF
states. For ν = 3 our variational state is [27]

|ψ〉 =
∏
k

(Uk + V0ke
iθ0kc†0k↑ + V1ke

iθ1kc†0k↓c
†
0k↑ + V2ke

iθ2kc†1k↑c
†
0k↑ + V3ke

iθ3kc†1k↑c
†
0k↓c

†
0k↑)|0〉. (5)

When Ecx < 0.4Ecd this ansatz does produce smoothly
varying n(k) at ν = 3, with the variational energy lower
than the HF energy. However, upon increasing Ecx we
recover the HF solution, lending further support to the
validity of HF results and the transition being 1st order.

Experimental signatures. Before presenting transport
signatures of mode-switching [27], we note that whenever
an edge changes from sharp to smooth, spin-mixed edge
modes will undergo avoided crossings with attendant spin
rotations along the edge [28–30]. Further, the ν = 2
state becomes fully polarized at Ẽc ≈ 2.13 (in HF at
qsc = 0). If a QPC is tuned to be at dimensionless two-
terminal conductance g2 = 2, the QPC region will be
fully polarized in the regime where Phase C occurs, and
unpolarized in the regime where Phase B occurs.

Our first “smoking gun” signature is in spin transport,
as illustrated in Fig. 2. The system is tuned to be in the
g2 = 1 or g2 = 2 conductance plateau, with the source
on the top left. Solid (dashed) lines indicate spin up

(down) modes at the edge and spin rotations in space
are indicated by black circles on the figures. The current
is carried by the channels O and M (Fig. 2(a)). For all
edges sharp and Ẽc > 2.13, there is a nontrivial spin
rotation of M as it enters the QPC region, but it rotates
back upon exiting the QPC, so that the current in the
drain (top right) remains unpolarized. When the right
side is in Phase C (Fig. 2(c)), the current in the drain
is spin polarized ↑. In Fig. 2(b) we show a QPC tuned
to g2 = 1 in the regime where Phase B occurs (O=0↓,
M=0↑ and I=1↑). Now the source current (top left) is ↑
but the drain current (top right) is ↓.

For our next signature, we consider the effect of static,
non-magnetic disorder, which allows tunneling between
neighboring chiral modes of the same spin. In Fig. 2(d)
and 2(e), the region outside the two QPCs is in Phase A.
We tune the system to the g2 = 1 plateau. If the inter-
QPC region is in Phase A, the opposite spin polarizations
of the two outer channels 0↑,0↓ prevent disorder-induced
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FIG. 2. (Color online) Experimental setups to show “smoking gun” signatures of mode switching. The source (drain) is always
on the top left (right). Red solid lines depict the 0↑ mode, green dashed lines the 0↓ mode and blue solid lines the 1↑ mode.
The edges are labelled on the bottom right of each panel. Spin rotations in space are indicated by black circles.
(a),(b) and (c) Single QPC setups. (a) All the edges are in Phase A, g2 = 2, and Ẽc > 2.13. The full polarization of the ν = 2
QPC region forces the M and I modes undergo a spin-rotation upon entering the QPC, and an inverse rotation upon exit. The
incoming/outgoing current is spin unpolarized. (b) When the edges to the right of the QPC are in Phase B, the current at
g2 = 1 reverses spin-polarization from ↑ to ↓ at the QPC. (c) When the edges to the right of the QPC are in Phase C, the
current (from A to C) at g2 = 2 changes from spin-unpolarized to spin-polarized at the QPC.
(d) and (e) Two-QPC setups at g2 = 1. (d) When the confining potential in the middle section is sharp on both the upper
and lower edges (in Phase A), a high quality g2 = 1 plateau emerges. (e) When the confining potential in the middle section
is smooth at both edges (in Phase C), disorder-induced degradation of the conductance plateau due to backscattering in the
inter-QPC region is expected.

tunneling, as shown in Fig. 2(d). If, however the inter-
QPC region is in Phase C (Fig. 2(e)), the two outer chan-
nels have same spin and disorder-induced tunneling is al-
lowed on both the top and bottom edges. This leads to
backscattering, and hence to a degradation of the quan-
tization of the conductance plateau. Similar results hold
for g2 = 2 when comparing setups with inter-QPC region
being in Phase A or in Phase B [27].

Summary and discussion. We have found spin-
exchange driven edge phases and quantum phase tran-
sitions that take place at ν = 3 for low Zeeman energies.
Our control parameters are the interaction strength Ẽc
and the edge width w̃. We focus on Ẽc . 2.5 : a par-
tially polarized bulk state with the LLs 0↑, 0↓ and 1↑
occupied. For small w̃, the order of the edges follows the
bulk order (Phase A). However, as w̃ becomes larger,
we find two distinct edge mode-switched phases: For
1.5 . Ẽc . 2.13, Phase B occurs with the edge ordering
O=outermost=0↓, M=middle=0↑ and I=innermost=1↑.
For 2.13 . Ẽc . 2.5 Phase C occurs with the edge
ordering O=0↑, M=1↑ and I=0↓. Heuristically, these
phases result from an exchange attraction between the
like-spin edge modes. Employing approximate analytical
methods (the spin unrestricted Hartree-Fock approxima-
tion, and minimization with respect to a particle non-

conserving variational state) we find the transitions to
be 1st-order. We stress that there is no significant charge
rearrangement associated with these transitions, putting
spin-mode-switching in a qualitatively different category
from the extensively investigated phenomena of charge-
driven edge reconstruction. The crucial requirements for
the switching transition to occur are: (i) A partially po-
larized bulk state. (ii) Moderate to strong interaction
strength Ẽc. (iii) A smooth edge. We have also pro-
vided (spin and charge) transport signatures of such tran-
sitions, relying on experimentally accessible setups.

Our findings have diverse implications, e.g.: (i) Bulk
ν = 1 supports charged skyrmions [31], while bulk ν =
3 does not [32, 33]. The ν = 1 spinful edge is known
to be unstable to the formation of edge skyrmions [34].
Similar edge spin texture instabilities would likely arise
in our ν = 3 system, especially in Phase C, with some
similarities to charge-neutral bilayer graphene [35]. (ii)
Our results should have direct analogues at ν = 4, and
more interestingly, in the QHE in graphene [36–38]. (iii)
Our analysis should generalize to fractional quantum Hall
states such as ν = 3

7 , which is the composite fermion
analog [39] of the ν = 3 state.
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