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We observed broken-symmetry quantum Hall effects and level crossings between spin- and valley-
resolved Landau levels (LLs) in Bernal stacked trilayer graphene. When the magnetic field was
tilted with respect to sample normal from 0◦ to 66◦, the LL crossings formed at intersections of
zeroth and second LLs from monolayer-graphene-like and bilayer-graphene-like subbands, respec-
tively, exhibited a sequence of transitions. The results indicate the LLs from different subbands
are coupled by in-plane magnetic fields (B‖), which was explained by developing the tight-binding
model Hamiltonian of trilayer graphene under B‖.
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The electronic properties of trilayer graphene (TLG)
provides distinct multiple energy spectrum, consist-
ing of overlapping monolayer-like linear and bilayer-like
parabolic subbands [1–7]. The subbands in TLG derives
from multiple atomic sites in a unit cell [8], which have
different origin from those of the conventional semicon-
ductor quantum well (QW), where multiple subbands de-
rive from electrostatic confinement of electrons in QW
[9]. The quantum number to index multiple subbands in
TLG is atomic sites of graphene lattice (Ax, Bx) where
x is an layer number [10], and the corresponding num-
ber in QW is the wavenumber of plane wave [9]. In the
previous experimental studies in semiconductor QW, in-
plane magnetic fields (B‖) have been shown to induce
intermixing effect between subbands [11, 12], and are
described in the framework of Schrödinger equation of
continuum Fermi sea [9]. In case of TLG, the wave-
functions in monolayer-like and bilayer-like bands con-
sists of hybridized electronic states in layer-asymmetric
states (LASs) [A1 −A3, B1 −B3] and layer symmetric
states (LSSs) [A1 +A3, B2, A2, B1 +B3], and their en-
ergy spectrum is described by the tight-binding model
[8, 13–16]. Therefore, whether application of B‖ affects
intermixing between monolayer-like and bilayer-like sub-
bands cannot be treated by the extension of conventional
semiconductor QW theory.

In order to investigate the intermixing effect between
MLG-like and BLG-like bands, one can utilize the cross-
ing between Landau levels (LLs) in MLG-like and BLG-
like bands, which scale as

√
B⊥ and B⊥, respectively.

The previous studies revealed that application of per-
pendicular electric fields E⊥ induced symmetry breaking
between mirror symmetric states A1−A3 ↔ A1 +A3 and
B1−B3 ↔ B1 +B3 , and LL anticrossing between the n-
th LL from the MLG-like band and (n+3)-th LL from the
BLG-like band for the K− valley ((n+4)-th LL from the
BLG-like band for the K+ valley) [17–24]. In contrast,

the effects of B‖ in TLG have yet been investigated. The-
oretical treatment of B‖ is limited to double-layer system,
which is described by combination of double monolayer
graphene [25, 26]. The experimental studies have been
conducted only in single-band materials, such as organic
conductors [27], and intercalated graphite [28, 29]. In
this work, we report on the magnetotransport measure-
ments of trilayer graphene, and show that B‖ induces LL
couplings between n = 0 and n = 2 LLs from MLG-like
and BLG-like bands, respectively. These effects are ex-
plained by introducing coupling terms in tight-binding
Hamiltonian which connects different sets of wavefunc-
tions in LSSs and LASs compared to E⊥.

We exfoliated graphene and hBN flakes on SiO2/Si
wafer [30–32] and assembled them into hBN/TLG/hBN
stacks using the dry pick-up method [33]. The Hall-bar
geometry and Au/Pd/Cr (45/15/10 nm) metal contacts
were fabricated using electron-beam lithography [inset of
Fig. 1(b)]. Transport measurements were conducted in a
dilution refrigerator with a base temperature of T = 100
mK. The sample was tilted in magnetic fields; thus, per-
pendicular (B⊥) and in-plane (B‖) magnetic fields were
tuned as B⊥ = Btot cos θ and B‖ = Btot sin θ, respec-
tively, where θ is the direction of magnetic field Btot

with respect to the sample normal. The longitudinal re-
sistance Rxx was measured with the alternating current
Iac = 10 nA. A silicon substrate was utilized as the global
back gate to tune the charge-carrier density according to
ne = Cg(Vg − V0)/e, where Cg = 9 × 10−9 F/cm2 is the
gate capacitance, Vg is the back-gate bias voltage, and
V0 is the value of Vg at charge-neutrality point.

Figure 1(a) shows Rxx vs. Vg measured at T = 2 K.
The narrow peak and high mobility of µ ∼ 1, 200, 000
cm2 V−1 s−1 indicated the unprecedented quality of our
device. Figure 1(b) shows Rxx as a function of B⊥ and
ν. Here, the value of ν was obtained as ν = neh/eB⊥,
where h is Planck’s constant. Rxx minima, represented
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FIG. 1: (color online) (a) Rxx vs. Vg measured at 2 K. (b)
Color plot of Rxx as a function of B⊥ and ν measured at
100 mK. (inset) Optical microscopy image of the device stud-
ied. The scale bar corresponds to 2 µm. (c) Calculated LL
spectrum as a function of B⊥. The red (black) curves corre-
spond to K+ (K−) valleys. Solid (dashed) curves indicate up
(down) spins.

by the blue stripes in Fig. 1(b), were observed at all
integer ν in the range of −14 ≤ ν ≤ 14, indicating the
complete lifting of spin and valley degeneracies of LLs.
Under an intermediate magnetic field of 1.5 T< B⊥ <
6.0 T, the Rxx minima were disappeared in the regions
indicated by dashed squares in Fig. 1(b). To characterize
the feature, we calculated the LL spectrum of TLG by
using the Slonczewski-Weiss-McClure parametrization of
the tight-binding model, which contains seven hopping
parameters (γ0, · · · , γ5, δ) [8]. When the parameters were
tuned as γ0 = 3.23 eV, γ1 = 0.39 eV, γ2 = −0.0237
eV , γ3 = 0.315 eV , γ4 = 0.0438 eV, γ5 = 0.006 eV,
and δ = 0.0143 eV, and estimating average displacement
field ∆1 generated by the back-gate electrode at the LL
crossing by the empirical relation ∆1 = e(U1 − U3)/2 ∼
Ed/6 = 5.8 [17, 21], the calculated LL crossings [dashed
squares in Fig. 1(c)] well reproduced the disappearance
points of minima [red dashed squares in Fig. 1(b)], from
which we can attribute the observed QHE to those of
Bernal stacked TLG.

The salient features in Fig. 1(b) are that the region of
suppressed Rxx is divided into several ring-like structures
at 2 < ν < 9, as shown in Fig. 2(a). From the calculated
LL spectrum [Fig. 2(b)], these features are attributed to
the crossings between the spin and valley resolved N = 0
and N = 2 LLs from MLG-like (0ml) and BLG-like (2bl)
bands [Fig. 2(b)]. In Fig. 2(a), we discerned 15 LL
crossings [red circles] out of the expected 4×4 = 16, and
they were attributed to those indicated by red circles
in Fig.2 (b). Here, one LL crossing was missing along
ν = 9 [gray circle in Fig. 2(b)], which may originate
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FIG. 2: (color online) (a) Color plot of Rxx as a function of
B⊥ and ν. Red solid circles indicate the LL crossings. (b)
Calculated LL spectrum at LL crossings. The red (black)
curves correspond to K+ (K−) valleys. Solid (dashed) curves
indicate up (down) spins. The numbers indicate ν at corre-
sponding LL gaps.

from QH ferromagnetism [34]. In this work, we focus our
attention on the remaining LL crossings. Here, as shown
in Fig. 2(b), the spacing between LLs were significantly
smaller than those between orbital-resolved LLs. In such
situation the Rxx is susceptible to slight changes in the
LL structure. We varied θ to address the effects of B‖ on
LL structures.

Figures 3(a) shows color plots of Rxx as a function of
B⊥ and ν measured at θ = 0◦, 20◦, 40◦, and 66◦ [left to
right]. When θ was increased, the region of suppressed
Rxx at ν = 3− 9 exhibited transitions [Fig. 3(a)]. Here,
the presence of QHS was defined by the appearance of
local minima in Rxx vs. ν curves at each B⊥, and we
plotted the positions of QHS in the B⊥−ν plane [Figs. S1
and S2 in the supplementary information]. Note that the
significant changes of LL crossing structures were caused
by θ. When θ was increased, the region of QHS formed
along ν = 3, 4, 5, 6, and 7 were gradually extended, and
the number of LL crossings was decreased from 15 to
4. In order to capture this behavior in detail, we show
line cuts of Figs. 3(a) at varying B⊥ for ν = 5, 6, and
7 [Figs. 3(b)]. The positions of QHS are indicated by
purple, blue, and green stripes in Figs. 3(c). At θ = 0◦,
Rxx minima along ν = 5 were divided into two sets of
B⊥ as 4.3 T< B⊥ < 4.6 T and, 4.9 T < B⊥ and three
LL crossings were observed at B⊥ = 4.3 T, 4.6 T, and
4.9 T. When θ was increased to θ = 20◦, the QHS at
B⊥ > 4.9 T were extended to smaller magnetic fields as
B⊥ > 4.8 T [Fig. 3(b)], and for further increase in θ,
the QHS were connected at θ = 40◦. Finally, at θ =
66◦ the QHS were developed for the entire range of B⊥.
QHS at ν = 6 exhibited different behavior from those
at ν = 5. At θ = 0◦, four LL crossings were present
at B⊥ = 4.2 T, 4.4 T, 4.9 T, and 5.4 T. On increasing
θ from 0◦ to 20◦, two LL crossings at B⊥ = 4.2 T and
4.4 T were merged [Fig. 3(c)]. On further increasing θ
to 40◦, the LL crossings at B⊥ = 4.9 T and 5.4 T were
merged at B⊥ ∼ 5.3 T. However, two LL crossings were
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FIG. 3: (color online) (a) Color plots of Rxx as a function
of B⊥ and ν measured at varying θ = 0◦, 20◦, 40◦, and 66◦

(from left to right). (b) Line cuts of (a) between ν = 5 and
7. Each curve was offset vertically. The bottom (top) curves
were measured at B⊥ = 4.0 T (B⊥ = 5.7 T). The color bars
overlaid on these plots indicate the ranges of B⊥ where QHS
emerged.

preserved up to θ = 66◦. In the case of ν = 7, the LL
crossings exhibited similar behavior to those at ν = 5.
At θ = 0◦, the QHS were divided into three regions as
B⊥ < 4.3 T, 4.7 T< B⊥ < 5.4 T, and 5.5 T < B⊥,
When θ was increased, the QHS formed at B⊥ < 4.3
T and θ = 0◦ were extended to higher B⊥, and finally
at θ = 66◦, the QHS were developed at 4.5 T < B⊥.
These observations clearly indicate that, by increasing θ,
significant structural changes occurred in LL structures,
and finite energy gaps were generated at LL crossings
along ν = 5 and 7. Note that these results constitute the
first direct observation of LL anticrossing induced by B‖.

In order to explain the observed LL anticrossing
behavior, we extended the conventional tight-binding
Hamiltonian of TLG [25, 26, 35, 36] and developed
a Hamiltonian of TLG under B‖. In the standard
Slonczewski-Weiss-McClure parametrization, with the
basis of [A1, B1, A2, B2, A3, B3], the Hamiltonian of TLG
can be described as

H =


U1 v0π

† v4π
† v3π γ2/2 0

v0π δ + U1 γ1 −v4π
† 0 γ5/2

v4π γ1 δ + U2 v0π
† −v4π γ1

v3π
† −v4π v0π U2 v3π

† −v4π
γ2/2 0 −v4π

† v3π U3 v0π
†

0 γ5/2 γ1 −v4π
† v0π δ + U3

+ζgµBBtotI

where π = ~(ξkx + iky), ~vi =
√

3
2 aγi, Um=1,2,3 is a

static potential at each graphene layer, ξ = ±1 is an
index for K+ and K− valleys, ζ = ±1 is an index

for up and down spins, g ∼ 2 is Lande’s g-factor, µB

is the Bohr magneton, and I is a unit matrix. Here,
we included the effects of magnetic fields by the vector
potential A(r) = (0, B⊥x − B‖z, 0) and Peierls phase

exp (i e~
∫Rj

Ri
A(R) · dr) [37]. When we took the basis

as {A1−A3√
2
, B1−B3√

2
, A1+A3√

2
, B2, A2,

B1+B3√
2
}, the Hamilto-

nian can be expressed as H = H0(B⊥) + H ′(∆1, B‖) +

ζgµBBtotI, with H0(B⊥) =

(
HMLG(B⊥) 0

0 HBLG(B⊥)

)
,

where HMLG (HBLG) represents monolayer-like (bilayer-
like) LLs [8]. Here, H ′(∆1, B‖) block is expressed as

H ′(∆1, B‖) =

(
0 H∆1,‖

H†∆1,‖ 0

)
and

H∆1,‖ =

(
∆1 iB‖dv3/

√
2 iB‖dv4/

√
2 −iB‖dv0

iB‖dv0 iB‖dv4/
√

2 0 ∆1

)
.

Note that, H ′(∆1, B‖) has off-diagonal terms which
connect MLG-like and BLG-like energy bands (H∆1,‖),
and B‖ are introduced in a different positions compared
to ∆1.

By numerically diagonalizing the Hamiltonian pre-
sented above, we calculated LL spectrum with
H ′(∆1, B‖) and H ′(∆1, B‖ = 0) [Figs. 4(a) and S3 in the
supplementary information]. In case of H ′(∆1, B‖ = 0)
only the Zeeman terms were increased with θ; therefore,
LLs were merely shifted, and no LL anticrossing was ob-
served [Figs. S11(a)-(d) in the supplementary informa-
tion]. Thus, the Hamiltonian without B‖ terms fails to
explain the observation in Fig. 3. When H ′(∆1, B‖)
term was included, the LL spectrum exhibited significant
changes [Fig. 4(a)]. When θ was increased to θ = 20◦,
small anticrossing gaps emerged at two sets of LL cross-
ings (0ml

K+,↑, 2
bl
K+,↑) and (0ml

K+,↓, 2
bl
K+,↓), as indicated by

the solid arrows in the second panel of Fig. 4(a). When
θ was further increased to θ = 40◦, anticrossing gaps
were developed at the crossings between (0ml

K−,↑, 2
bl
K−,↑)

and (0ml
K−,↓, 2

bl
K−,↓) [third panel of Fig. 4(a)]. Finally,

at θ = 66◦ , the anticrossing behavior resulted in struc-
tural changes of the LL spectrum [fourth panel of Fig.
4(a)]. In Fig. 4(b), we show the separation between LLs
∆Eν at ν = 5 − 7 with H ′(∆1, B‖ = 0) (dotted curves)
and H ′(∆1, B‖) (solid curves). When θ was increased,
at ν = 5 , the number of LL crossings decreased from
3 to 0. Similarly, at ν = 7, the number of LL crossings
decreased from 3 to 1. On the other hand, at ν = 6 , 4
LL crossings that were formed at θ = 0◦ decreased but
two were retained up to θ = 66◦. On comparing these
results with the experimental data presented in Fig. 3,
our model calculation well explains the observed features
in QHS at ν = 5, 6 and 7. From these results, we con-
clude that the observed changes in QHE under B‖ to LL
anticrossing induced by H ′(∆1, B‖).



4

0o 20o 40o 66o(a)

(b)

141210
E (meV)

5

4

B
 (T

)

141210
E (meV)

141210
E (meV)

1412108
E (meV)

2 3 4 5 6

7 8 9 10

2 3 4 5 6

7 8 9 10

2 3 4 5 6

7 8 9 10

2 3 4 5

6

7

8

9
10

0.50.0

5

4

B
 (T

)

0.50.0
E (meV)

0.50.0 0.50.0 0.50.0
E (meV)

0.50.0 0.50.0 0.50.0
E (meV)

0.50.0 10 10
E (meV)

10

FIG. 4: (color online) (a) LL spectrum as a function of B⊥ for θ = 0◦, 20◦, 40◦, and 66◦ (from left to right) calculated using
H ′(∆1, B‖). The red (black) curves indicate K+ (K−) valleys. Solid (dashed) curves indicate up (down) spins. The figures
indicate ν at corresponding LL gaps. At θ = 66◦ LL gaps at ν = 5, 6,and 7 are highlighted by red, blue, and green arrows,
respectively. (b) The values of LL gaps ∆E as a function of B⊥ at ν = (purple) 5, (blue) 6, (green) 7 for θ = 0◦, 20◦, 40◦, and
66◦ (from left to right), calculated by H ′(∆1, B‖ = 0) (dotted curves) and H ′(∆1, B‖) (solid curves), respectively.

Here, we discuss the interaction between LLs in-
duced by H ′(∆1, B‖) [38] based on the approximated
eigenwavefunctions of the tight-binding Hamiltonian.
When neglecting the trigonal warping terms v3, the
eigenwavefunctions of MLG-like and BLG-like bands
at {K+,K−} valleys can be written by the combina-
tion of harmonic oscillator states as |ML, n,±〉 =
{(c1 |n− 1〉 , c2 |n〉)T , (c′1 |n〉 , c′2 |n− 1〉)T } and
|BL, n,±〉 = {(c3 |n− 2〉 , c4 |n〉 , c5 |n− 1〉 , c6 |n− 1〉)T ,
(c′3 |n〉 , c′4 |n− 2〉 , c′5 |n− 1〉 , c′6 |n− 1〉)T }. Based on
these eigenwavefunctions, the effects of H ′(∆1, B‖) can
be stated as to couple the harmonic oscillators between
LSSs and LASs. In case of K+ valley, the inner product
of H ′(∆1, B‖) by LLs |ML, 2,+〉 and |BL, 0,+〉 takes
iB‖dv0c3c

∗
2. This implies that the electronic states

between c2 |n〉 at [A1 − A3] and c3 |n− 2〉 at [A1 + A3]
are coupled through electron hopping by γ0. In case
of K− valley, the inner product of H ′(∆1, B‖) by LLs

|ML, 2,−〉 and |BL, 0,−〉 becomes B‖dv3/
√

2c′4c
′∗
1 , indi-

cating the electronic states between c′1 |n〉 at [A1 − A3]
and c′4 |n− 2〉 at [B2] are coupled through electron
hopping by γ3. The matrix elements for the K+ valley
(v0) was significantly larger than those for the K− valley
(v3). These asymmetries are experimentally emerged
as the difference in the size of anticrossing gaps at K+

valley [solid arrows in second panel of Fig. 4(a)] and
K− valley [solid arrows in third panel of Fig. 4(a)].
Our Hamiltonian well explains observed LL anticrossing
between N = 0 LL from MLG-like bands and N = 2 LL
from BLG-like bands. Especially, the inner product of
H ′(∆1, B‖) with B‖ = 0 becomes zero, which indicate
that B‖ have qualitatively different effects from those
originated from E⊥.

Finally, we briefly comment on the LL crossing behav-

iors at other filling factors. At ν = 3 and 4, the QHS were
extended down to low magnetic fields with increasing θ
[Figs. 3(a) and Fig. S2 in the supplementary informa-
tion]. These results were well reproduced by our theo-
retical model calculation. At ν = 9, QHS were present
throughout the range of B⊥ studied at θ = 0◦, and the
theoretical model calculation predicts one LL crossing.
These observations indicate that, even in the absence of
in-plane magnetic fields, gaps with finite size were devel-
oped at the corresponding LL crossings. Considering that
the LLs are spin- or valley-polarized in this region, the
presence of a gap can indicate the emergence of ordered
ground states in SU(4) QH systems around LL crossings
in TLG, which was recently reported in [34]. Our results,
in combination with the states observed in Ref. [34] can
suggest that it can lead to the emergence of novel elec-
tronic ground states of the SU(4) QH system by tuning
the interactions by H ′(∆1, B‖).

In summary, we studied the magnetotransport proper-
ties of Bernal-stacked TLG under tilted magnetic fields.
We observed anticrossing between the zeroth LL from
monolayer-like band and second LL from bilayer-like
bands. We developed a tight-binding Hamiltonian that
accounts for the observed experimental results, indicating
that the LL anticrossing behavior is induced by in-plane
magnetic fields. Our observation indicates that applica-
tion of B‖ induced coupling between monolayer-like and
bilayer-like bands in a different manner than previously
studied E⊥. This study opens a new tuning strategy for
controlling the electronic ground states of TLG.
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